1
|
Suriya U, Intamalee P, Saeeng R, Wilasluck P, Deetanya P, Wangkanont K, Kanjanasirirat P, Wongwitayasombat C, Nutho B. Design and Evaluation of Andrographolide Analogues as SARS-CoV-2 Main Protease Inhibitors: Molecular Modeling and in vitro Studies. Drug Des Devel Ther 2025; 19:3907-3924. [PMID: 40391180 PMCID: PMC12087591 DOI: 10.2147/dddt.s514193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
Background The COVID-19 pandemic, caused by SARS-CoV-2, highlights the urgent need for novel antiviral agents targeting key viral proteins. The main protease (Mpro) is a crucial enzyme for viral replication, making it an attractive drug target. Andrographolide, a natural compound with known antiviral properties, serves as a promising scaffold for inhibitor development. Objective This study aimed to design, synthesize, and evaluate C-12 dithiocarbamate andrographolide analogues as potential SARS-CoV-2 Mpro inhibitors using computational and experimental approaches. Methods A structure-based drug design approach was employed to design andrographolide derivatives. Molecular dynamics simulations were conducted to assess binding interactions and stability. The hit compound was synthesized and evaluated using an enzyme inhibition assay against SARS-CoV-2 Mpro. Cytotoxicity was assessed in HepG2, HaCaT, and HEK293T cells to determine safety profiles. Results Among the designed compounds, compound 1, incorporating a 2,4,5-trifluorobenzene moiety, exhibited the strongest binding affinity and stable interactions with key Mpro residues (H41, M49 and M165). Enzyme inhibition assay confirmed ~70% inhibition at 100 µM, with moderate to low cytotoxicity (CC50 values comparable to andrographolide). Conclusion Compound 1 represents a promising non-covalent SARS-CoV-2 Mpro inhibitor. Further structural optimization is necessary to enhance potency, selectivity, and safety for therapeutic applications.
Collapse
Affiliation(s)
- Utid Suriya
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pansachon Intamalee
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi, 20131, Thailand
| | - Rungnapha Saeeng
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi, 20131, Thailand
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
3
|
Medina-Berríos N, Pantoja-Romero W, Lavín Flores A, Díaz Vélez S, Martínez Guadalupe AC, Torres Mulero MT, Kisslinger K, Martínez-Ferrer M, Morell G, Weiner BR. Synthesis and Characterization of Carbon-Based Quantum Dots and Doped Derivatives for Improved Andrographolide's Hydrophilicity in Drug Delivery Platforms. ACS OMEGA 2024; 9:12575-12584. [PMID: 38524434 PMCID: PMC10955586 DOI: 10.1021/acsomega.3c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 03/26/2024]
Abstract
Carbon-based quantum dots (CBQDs), sulfur-doped carbon-based quantum dots (S-CBQDs), and nitrogen-doped carbon-based quantum dots (N-CBQDs) have strong potential for drug delivery platforms. They were conjugated with andrographolide, a well-known hydrophobic drug, to study the concomitant changes in hydrophilicity. The interactions between these nanomaterials and the drug were studied by characterizing the optical and structural properties of the nanoparticles before and after coupling with the drug. It was found that the interaction of the drug with these nanomaterials produced noticeable changes in their optical and structural properties. Moreover, the partition coefficient for the nanocomposites was determined by NMR. The results indicate that conjugating the drug with the nanoparticles significantly enhanced its affinity for the aqueous phase, from 2.632 to 0.1117, thereby opening the possibility of using this approach for developing an effective drug delivery platform for this hydrophobic drug.
Collapse
Affiliation(s)
- Nataniel Medina-Berríos
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Wenndy Pantoja-Romero
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Alexis Lavín Flores
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Sebastián
C. Díaz Vélez
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Anna C. Martínez Guadalupe
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Mariana T. Torres Mulero
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Kim Kisslinger
- Brookhaven
National Lab, Upton, New York 11973, United States
| | - Magaly Martínez-Ferrer
- Division
of Cancer Biology, University of Puerto
Rico Comprehensive Cancer Center, San Juan 00936-3027, Puerto Rico
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan 00925-253, Puerto Rico
| | - Gerardo Morell
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Brad R. Weiner
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| |
Collapse
|
4
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
5
|
Hamad RS, Al-Kuraishy HM, Alexiou A, Papadakis M, Ahmed EA, Saad HM, Batiha GES. SARS-CoV-2 infection and dysregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Cell Stress Chaperones 2023; 28:657-673. [PMID: 37796433 PMCID: PMC10746631 DOI: 10.1007/s12192-023-01379-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its activators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.
Collapse
Affiliation(s)
- Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
6
|
Wang Z, Wang N, Yang L, Song XQ. Bioactive natural products in COVID-19 therapy. Front Pharmacol 2022; 13:926507. [PMID: 36059994 PMCID: PMC9438897 DOI: 10.3389/fphar.2022.926507] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
The devastating COVID-19 pandemic has caused more than six million deaths worldwide during the last 2 years. Effective therapeutic agents are greatly needed, yet promising magic bullets still do not exist. Numerous natural products (cordycepin, gallinamide A, plitidepsin, telocinobufagin, and tylophorine) have been widely studied and play a potential function in treating COVID-19. In this paper, we reviewed published studies (from May 2021 to April 2022) relating closely to bioactive natural products (isolated from medicinal plants, animals products, and marine organisms) in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ning Wang
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| |
Collapse
|
7
|
Tan SH, Karuppasamy M, Lan P, Zhang Y, Hu J, Lai X, Lim BSC, Liu W, Chen J, Chew EH, Banwell M. Ribisins and Certain AnaloguesExert Neuroprotective Effects Through Activation of the Keap‐Nrf2‐ARE Pathway. ChemMedChem 2022; 17:e202200292. [DOI: 10.1002/cmdc.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Muthukumar Karuppasamy
- National University of Singapore - Kent Ridge Campus: National University of Singapore Pharmacy SINGAPORE
| | | | - Yaochun Zhang
- National University of Singapore - Kent Ridge Campus: National University of Singapore Medicine SINGAPORE
| | - Jiayi Hu
- National University of Singapore - Kent Ridge Campus: National University of Singapore Pharmacy SINGAPORE
| | - Xingchen Lai
- National University of Singapore - Kent Ridge Campus: National University of Singapore Pharmacy SINGAPORE
| | - Belinda Siok-Cheng Lim
- National University of Singapore - Kent Ridge Campus: National University of Singapore Pharmacy SINGAPORE
| | | | | | - Eng-Hui Chew
- National University of Singapore Pharmacy SINGAPORE
| | | |
Collapse
|