1
|
LaPlante SR, Coric P, Bouaziz S, França TCC. NMR spectroscopy can help accelerate antiviral drug discovery programs. Microbes Infect 2024; 26:105297. [PMID: 38199267 DOI: 10.1016/j.micinf.2024.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Small molecule drugs have an important role to play in combating viral infections, and biophysics support has been central for contributing to the discovery and design of direct acting antivirals. Perhaps one of the most successful biophysical tools for this purpose is NMR spectroscopy when utilized strategically and pragmatically within team workflows and timelines. This report describes some clear examples of how NMR applications contributed to the design of antivirals when combined with medicinal chemistry, biochemistry, X-ray crystallography and computational chemistry. Overall, these multidisciplinary approaches allowed teams to reveal and expose compound physical properties from which design ideas were spawned and tested to achieve the desired successes. Examples are discussed for the discovery of antivirals that target HCV, HIV and SARS-CoV-2.
Collapse
Affiliation(s)
- Steven R LaPlante
- Pasteur Network, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Québec, H7V 5B7, Canada; Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France.
| | - Pascale Coric
- Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France
| | - Serge Bouaziz
- Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France
| | - Tanos C C França
- Pasteur Network, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
2
|
Öztürk S, Demir M, Koçkaya EA, Karaaslan C, Süloğlu AK. Establishment of a 3D multicellular placental microtissues for investigating the effect of antidepressant vortioxetine. Reprod Toxicol 2024; 123:108519. [PMID: 38043629 DOI: 10.1016/j.reprotox.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
The placenta is a unique organ with an active metabolism and dynamically changing physiology throughout pregnancy. It is difficult to elucidate the structure of cell-cell and cell-extracellular matrix interactions of the placenta in in vivo studies due to interspecies differences and ethical constraints. In this study, human umbilical cord vein cells (HUVEC) and human placental choriocarcinoma cells (BeWo) were co-cultured for the first time to form spheroids (microtissues) on a three-dimensional (3D) Petri Dish® mold and compared with a traditional two-dimensional (2D) system. Vortioxetine is an antidepressant with a lack of literature on its use in pregnancy in established cultures, the toxicity of vortioxetine was studied to investigate the response of spheroids representing placental tissue. Spheroids were characterised by morphology and exposed to vortioxetine. Cell viability and barrier integrity were then measured. Intercellular junctions and the localisation of serotonin transporter (SERT) proteins were demonstrated by immunofluorescence (IF) staining in BeWo cells. Human chorionic gonadotropin (beta-hCG) hormone levels were also measured. In the 3D system, cell viability and hormone production were higher than in the 2D system. It was observed that the barrier structure was impaired, the structure of intracellular skeletal elements was altered and SERT expression decreased depending on vortioxetine exposure. These results demonstrate that the multicellular microtissue placenta model can be used to obtain results that more closely resemble in vivo toxicity studies of various xenobiotics than other 2D and mono-culture spheroid models in the literature. It also describes the use of 3D models for soft tissues other than the placenta.
Collapse
Affiliation(s)
- Selen Öztürk
- Hacettepe University, Faculty of Science, Department of Biology, Zoology Section, Beytepe Campus, Ankara, Türkiye
| | - Merve Demir
- Hacettepe University, Faculty of Science, Department of Biology, Zoology Section, Beytepe Campus, Ankara, Türkiye
| | - E Arzu Koçkaya
- Gazi University, The Higher Vocational School of Health Services, Gölbaşı Campus, Ankara, Türkiye
| | - Cagatay Karaaslan
- Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Beytepe Campus, Ankara, Türkiye
| | - Aysun Kılıç Süloğlu
- Hacettepe University, Faculty of Science, Department of Biology, Zoology Section, Beytepe Campus, Ankara, Türkiye.
| |
Collapse
|
3
|
Ribeiro R, Botelho FD, Pinto AMV, La Torre AMA, Almeida JSFD, LaPlante SR, Franca TCC, Veiga-Junior VF, Dos Santos MC. Molecular modeling study of natural products as potential bioactive compounds against SARS-CoV-2. J Mol Model 2023; 29:183. [PMID: 37212923 DOI: 10.1007/s00894-023-05586-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
CONTEXT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 infection and responsible for millions of victims worldwide, remains a significant threat to public health. Even after the development of vaccines, research interest in the emergence of new variants is still prominent. Currently, the focus is on the search for effective and safe drugs, given the limitations and side effects observed for the synthetic drugs administered so far. In this sense, bioactive natural products that are widely used in the pharmaceutical industry due to their effectiveness and low toxicity have emerged as potential options in the search for safe drugs against COVID-19. Following this line, we screened 10 bioactive compounds derived from cholesterol for molecules capable of interacting with the receptor-binding domain (RBD) of the spike protein from SARS-CoV-2 (SC2Spike), responsible for the virus's invasion of human cells. Rounds of docking followed by molecular dynamics simulations and binding energy calculations enabled the selection of three compounds worth being experimentally evaluated against SARS-CoV-2. METHODS The 3D structures of the cholesterol derivatives were prepared and optimized using the Spartan 08 software with the semi-empirical method PM3. They were then exported to the Molegro Virtual Docking (MVD®) software, where they were docked onto the RBD of a 3D structure of the SC2Spike protein that was imported from the Protein Data Bank (PDB). The best poses obtained from MVD® were subjected to rounds of molecular dynamics simulations using the GROMACS software, with the OPLS/AA force field. Frames from the MD simulation trajectories were used to calculate the ligand's free binding energies using the molecular mechanics - Poisson-Boltzmann surface area (MM-PBSA) method. All results were analyzed using the xmgrace and Visual Molecular Dynamics (VMD) software.
Collapse
Affiliation(s)
- Rayssa Ribeiro
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Fernanda D Botelho
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Amanda M V Pinto
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Antonia M A La Torre
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Joyce S F D Almeida
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Steven R LaPlante
- INRS, Centre Armand-Frappier Santé Biotechnologie 531, Boulevard Des Prairies, Laval, QC, Canada
| | - Tanos C C Franca
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
- INRS, Centre Armand-Frappier Santé Biotechnologie 531, Boulevard Des Prairies, Laval, QC, Canada
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Valdir F Veiga-Junior
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Marcelo C Dos Santos
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
França TCC, Botelho FD, Drummond ML, LaPlante SR. Theoretical Investigation of Repurposed Drugs Potentially Capable of Binding to the Catalytic Site and the Secondary Binding Pocket of Subunit A of Ricin. ACS OMEGA 2022; 7:32805-32815. [PMID: 36120038 PMCID: PMC9476511 DOI: 10.1021/acsomega.2c04819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Recently, we reported a library of 82 compounds, selected from different databanks through virtual screening and docking studies, and pointed to 6 among them as potential repurposed dual binders to both the catalytic site and the secondary binding pockets of subunit A of ricin (RTA). Here, we report additional molecular modeling studies of an extended list of compounds from the original library. Rounds of flexible docking followed by molecular dynamics simulations and further rounds of MM-PBSA calculations using a more robust protocol, enabled a better investigation of the interactions of these compounds inside RTA, the elucidation of their dynamical behaviors, and updating the list of the most important residues for the ligand binding. Four compounds were pointed as potential repurposed ricin inhibitors that are worth being experimentally investigated.
Collapse
Affiliation(s)
- Tanos C. C. França
- Université
de Québec, INRS—Centre Armand-Frappier Santé
Biotechnologie, Laval, Quebec H7V 1B7, Canada
- Laboratory
of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Department
of Chemistry, Faculty of Science, University
of Hradec Kralove, Rokitanskeho
62, Hradec Kralove 50003, Czech Republic
| | - Fernanda D. Botelho
- Laboratory
of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | | | - Steven R. LaPlante
- Université
de Québec, INRS—Centre Armand-Frappier Santé
Biotechnologie, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|