1
|
Roy S, Pramanik P, Bhattacharya S. Exploring the Role of G-Quadruplex DNA, and their Structural Polymorphism, in Targeting Small Molecules for the Design of Anticancer Therapeutics: Progress, Challenges, and Future Directions. Biochimie 2025:S0300-9084(25)00068-9. [PMID: 40250703 DOI: 10.1016/j.biochi.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Selective stabilization of non-canonical G-quadruplex DNA structures by small molecules can be a potential target for anticancer therapeutics. The primary motivation for the molecular design of these G-quadruplex binders is to restrict the transcriptional machinery, which can impede cancer cell progression. This review article comprises the structural diversity of different G-quadruplex DNA, the design strategy for targeting these structures with small molecules, and various G-quadruplex binding ligands which have been expanded by the chemists and biologists over the past few decades. Further, the existence of G-quadruplex structures inside human cells, the significant challenges for designing these selective G-quadruplex binding ligands, current status, and progress towards achieving this goal have also been discussed.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pulakesh Pramanik
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517619, India.
| |
Collapse
|
2
|
Choudhary NK, Gupta S, Das G, Sahoo A, Harikrishna S, Sinha S, Gore KR. Selective Recognition of the Dimeric NG16 Parallel G-Quadruplex Structure Using Synthetic Turn-On Red Fluorescent Protein Chromophore. Biochemistry 2024; 63:2842-2854. [PMID: 39405565 DOI: 10.1021/acs.biochem.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Red fluorescent protein (RFP)-based fluorescent probes that can selectively interact with specific nucleic acids are of great importance for therapeutic and bioimaging applications. Herein, we have reported the synthesis of RFP chromophores for selective recognition of G-quadruplex nucleic acids in vitro and ex vivo. We identified DFHBI-DM as a fluorescent turn-on probe that binds to the dimeric NG16 parallel quadruplex with superior selectivity and sensitivity over various parallel, antiparallel, and hybrid topologies. The binding of DFHBI-DM to NG16 exhibited excellent photophysical properties, including high binding affinity, large Stokes shift, high photostability, and quantum yield. The MD simulation study supports the 1:1 binding stoichiometry. It confirms the planar conformation of DFHBI-DM, which makes strong binding interactions with a flat quartet of NG16 compared to other antiparallel and hybrid topologies. The cell imaging and MTT assays revealed that DFHBI-DM is a biocompatible and efficient fluorescent probe for intracellular imaging of NG16. Overall, these results demonstrated that DFHBI-DM could be an effective fluorescent G4-stabilizing agent for the dimeric NG16 parallel quadruplex, and it could be a promising candidate for further exploration of bioimaging and therapeutic applications.
Collapse
Affiliation(s)
- Nishant Kumar Choudhary
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Avijit Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Sae-Lim S, Ngiwsara L, Lirdprapamongkol K, Puttamuk T, Maneeanakekul S, Thangsan P, Sangsuwan W, Svasti J, Chuawong P. Anthraquinones from the roots of Morinda scabrida Craib exhibit antiproliferative activity against A549 lung cancer cells and antitubulin polymerization. Fitoterapia 2024; 173:105781. [PMID: 38128619 DOI: 10.1016/j.fitote.2023.105781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Six anthraquinones were isolated from Morinda scabrida Craib, an unexplored species of Morinda found in the tropical forest of Thailand. All six anthraquinones showed cytotoxicity against A549 lung cancer cells, with the most active compound, nordamnacanthal (MS01), exhibiting the IC50 value of 16.3 ± 2.5 μM. The cytotoxic effect was dose-dependent and led to cell morphological changes characteristic of apoptosis. In addition, flow cytometric analysis showed dose-dependent apoptosis induction and the G2/M phase cell cycle arrest, which was in agreement with the tubulin polymerization inhibitory activity of MS01. Molecular docking analysis illustrated the binding between MS01 and the α/β-tubulin heterodimer at the colchicine binding site, and UV-visible absorption spectroscopy revealed the DNA binding capacity of MS01.
Collapse
Affiliation(s)
- Sorachai Sae-Lim
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | | | - Thamrongjet Puttamuk
- School of Agriculture and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| | - Sutida Maneeanakekul
- School of Agriculture and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| | - Poomsith Thangsan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Withsakorn Sangsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
4
|
Roy S, Bhattacharya S. An in silico approach to evaluate the bindings of natural flavonoids and RNA-DNA hybrids. J Biomol Struct Dyn 2023:1-8. [PMID: 37922129 DOI: 10.1080/07391102.2023.2275184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2023]
Abstract
Flavonoids, low molecular weight polyphenolic compounds, are important natural products that belong to plant secondary metabolites. They have diverse biomedical applications such as antioxidative, anti-inflammatory, enzyme inhibitory, antimutagenic, anticarcinogenic, aromatase inhibitory effects, etc. Some of the flavonoids have been exported for bindings with certain DNA and tRNA structures both experimentally and computationally. RNA-DNA hybrid (RDH) falls into an important category of noncanonical nucleic acid structures that have many important biological functions. We have investigated the interaction of RDH structures with some of the dietary flavonoids with the aid of computational methods such as docking and molecular dynamics simulation. The presence of the - OH group on the ligand and the availability of a proper binding pocket in the macromolecule are the two main factors driving the binding preference. Thus, this computationally guided report explains the binding of the flavonoids with RDH structures to assist the researchers in designing noncanonical nucleic acid-targeted drug molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soma Roy
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Santanu Bhattacharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
- Department of Chemistry, Indian Institute of Science, Education & Research, Tirupati, India
| |
Collapse
|
5
|
Patidar RK, Tiwari K, Tiwari R, Ranjan N. Promoter G-Quadruplex Binding Styryl Benzothiazolium Derivative for Applications in Ligand Affinity Ranking and as Ethidium Bromide Substitute in Gel Staining. ACS APPLIED BIO MATERIALS 2023. [PMID: 37229607 DOI: 10.1021/acsabm.3c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fluorescent compounds that can preferentially interact with certain nucleic acids are of great importance in new drug discovery in a multitude of functions including fluorescence-based displacement assays and gel staining. Here, we report the discovery of an orange emissive styryl-benzothiazolium derivative (compound 4) which interacts preferentially with Pu22 G-quadruplex DNA among a pool of nucleic acid structures containing G-quadruplex, duplex, and single-stranded DNA structures as well as RNA structures. Fluorescence-based binding analysis revealed that compound 4 interacts with Pu22 G-quadruplex DNA in a 1:1 DNA to ligand binding stoichiometry. The association constant (Ka) for this interaction was found to be 1.12 (±0.15) × 106 M-1. Circular dichroism studies showed that the binding of the probe does not cause changes in the overall parallel G-quadruplex conformation; however, signs of higher-order complex formation were seen in the form of exciton splitting in the chromophore absorption region. UV-visible spectroscopy studies confirmed the stacking nature of the interaction of the fluorescent probe with the G-quadruplex which was further complemented by heat capacity measurement studies. Finally, we have shown that this fluorescent probe can be used toward G-quadruplex-based fluorescence displacement assays for ligand affinity ranking and as a substitute for ethidium bromide in gel staining.
Collapse
Affiliation(s)
- Rajesh Kumar Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Khushboo Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| |
Collapse
|
6
|
Roy S, Maiti B, Banerjee N, Kaulage MH, Muniyappa K, Chatterjee S, Bhattacharya S. New Xanthone Derivatives as Potent G-Quadruplex Binders for Developing Anti-Cancer Therapeutics. ACS Pharmacol Transl Sci 2023; 6:546-566. [PMID: 37082748 PMCID: PMC10111628 DOI: 10.1021/acsptsci.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 04/22/2023]
Abstract
Xanthone is an important scaffold for various medicinally relevant compounds. However, it has received scant attention in the design of agents that are cytotoxic to cancer cells via targeting the stabilization of G-quadruplex (G4) nucleic acids. Specific G4 DNA recognition against double-stranded (ds) DNA is receiving epoch-making interest for the development of G4-mediated anticancer agents. Toward this goal, we have synthesized xanthone-based derivatives with various functionalized side-arm substituents that exhibited significant selectivity for G4 DNA as compared to dsDNA. The specific interaction has been demonstrated by performing various biophysical experiments. Based on the computational study as well as the competitive ligand binding assay, it is inferred that the potent compounds exhibit an end-stacking mode of binding with G4 DNA. Additionally, compound-induced conformational changes in the flanking nucleotides form the binding pocket for effective interaction. Selective action of the compounds on cancer cells suggests their effectiveness as potent anti-cancer agents. This study promotes the importance of structure-based screening approaches to get molecular insights for new scaffolds toward desired specific recognition of non-canonical G4 DNA structures.
Collapse
Affiliation(s)
- Soma Roy
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Bappa Maiti
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nilanjan Banerjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Mangesh H. Kaulage
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kalappa Muniyappa
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
7
|
Roy S, Chakraborty N, Maiti B, Muniyappa K, Bhattacharya S. Design and Synthesis of Xanthone Analogues Conjugated with Aza-aromatic Substituents as Promising G-Quadruplex Stabilizing Ligands and their Selective Cancer Cell Cytotoxic Action. Chembiochem 2023; 24:e202200609. [PMID: 36455103 DOI: 10.1002/cbic.202200609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
We have examined the stabilization of higher-order noncanonical G-quadruplex (G4) DNA structures formed by the G-rich sequences in the promoter region of oncogenes such as c-MYC, c-KIT, VEGF and BCl2 by newly synthesized, novel nitrogen-containing aromatics conjugated to xanthone moiety. Compounds with N-heterocyclic substituents such as pyridine (XNiso), benzimidazole (XBIm), quinoxaline (XQX) and fluorophore dansyl (XDan) showed greater effectiveness in stabilizing the G4 DNA as well as selective cytotoxicity for cancer cells (mainly A549) over normal cells both in terms of UV-Vis spectral titrations and cytotoxicity assay. Both fluorescence spectral titrimetric measurements and circular dichroism (CD) melting experiments further substantiated the G4 stabilization phenomenon by these small-molecular ligands. In addition, these compounds could induce the formation of parallel G4 structures in the absence of any added salt condition in Tris⋅HCl buffer at 25 °C. In a polymerase stop assay, the formation of stable G4 structures in the promoter of oncogenes and halting of DNA synthesis in the presence of the above-mentioned compounds was demonstrated by using oncogene promoter as the DNA synthesis template. Apoptosis-mediated cell death of the cancer cells was proved by Annexin V-PI dual staining assay and cell-cycle arrest occurred in the S phase of the cell cycles. The plausible mode of binding involves the stacking of the xanthone core on the G4 DNA plane with the possibility of interaction with the 5'-overhang as indicated by molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,School of Applied & Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Nirmal Chakraborty
- School of Applied & Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Bappa Maiti
- School of Applied & Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,School of Applied & Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 700032, India
| |
Collapse
|