1
|
Zhang Y, Xu W, Cheng D, Zhao M, Xiong J, Li Q, Miao Q. Molecular Engineering of a Self-Sustaining Modular Afterglow Scaffold for In Vivo Activatable Imaging. Angew Chem Int Ed Engl 2025; 64:e202500801. [PMID: 40091767 DOI: 10.1002/anie.202500801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Self-sustaining afterglow molecules (SAMs) offer high simplicity, reproducibility, and design flexibility compared to common multicomponent systems. To date, only a few SAMs have been reported. However, these studies mainly focus on probe selection and screening, without providing the guidance for constructing SAMs from the bottom up. Herein, we report the molecular design and tuning of a boron dipyrromethene derivative (BDI), with structural engineering to enhance the singlet oxygen (1O2) reactivity and photosensitivity, aiming to construct SAMs for activatable afterglow imaging. The optimized BDI is customized into water-soluble nanoparticles (i.e., BDI-NPs) aided by an amphiphilic polymer, achieving all-in-one afterglow luminescence with a peak at 780 nm. An activatable afterglow probe (i.e., BDIS-NPs) is fabricated, which can simultaneously activate fluorescence and afterglow signals in the presence of hydrogen disulfide (H2S). Owing to the elimination of autofluorescence and high activation contrast of the afterglow signal, BDIS-NPs enables early monitoring of lipopolysaccharide (LPS)-induced acute lung injury within 15 min and sensitive visualization of H2S accumulation in the brain of schizophrenia mice with a high signal-to-background ratio (SBR), which is not achievable by fluorescence imaging. This study provides an in-depth understanding and design guidelines for SAMs and activatable afterglow imaging.
Collapse
Affiliation(s)
- Yuyang Zhang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Weina Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Diedie Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Meng Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Jiamin Xiong
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Qing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Krylova LV, Otvagin VF, Gribova GP, Kuzmina NS, Fedotova EA, Zelepukin IV, Nyuchev AV, Kustov AV, Morshnev PK, Berezin DB, Koifman MO, Vatsadze SZ, Balalaeva IV, Fedorov AY. Developing Chlorin/Arylaminoquinazoline Conjugates with Nanomolar Activity for Targeted Photodynamic Therapy: Design, Synthesis, SAR, and Biological Evaluation. J Med Chem 2025; 68:1901-1923. [PMID: 39743785 DOI: 10.1021/acs.jmedchem.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In this report, we developed novel chlorin/arylaminoquinazoline conjugates for targeted photodynamic therapy of cancer. The synthesized photosensitizers consisted of chlorin-e6 metallocomplexes (Zn, In, or Pd) conjugated with arylaminoquinazoline ligands with high affinity for epidermal growth factor receptors (EGFR). Additionally, the selectivity and antitumor properties of the conjugates were investigated in the EGFR-expressing A431 human tumor cell line in vitro. Among the tested molecules, the In-containing conjugate effectively inhibited tumor cell proliferation at nanomolar concentrations, a rare property for conventional photosensitizers. In in vivo experiments, the conjugates rapidly accumulated at the tumor site in nude mice bearing A431 xenograft tumors. Subsequent distribution analysis among different tissues was carried out using fluorescence imaging and elemental analysis. Finally, we demonstrated that the most promising In-containing conjugate was capable of inhibiting xenograft tumor growth in mice through combinational therapy. This therapeutic approach, combined with the conjugate's confirmed safety profile, highlights its potential for effective and safe cancer treatment.
Collapse
Affiliation(s)
- Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Galina P Gribova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina A Fedotova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Ivan V Zelepukin
- Uppsala University, Dag Hammarskjölds väg, 20751 85 Uppsala, Sweden
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Andrey V Kustov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russian Federation
| | - Philipp K Morshnev
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russian Federation
| | - Dmitry B Berezin
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153012, Russian Federation
| | - Mikhail O Koifman
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153012, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
3
|
Lin W, Wang X, Diao M, Wang Y, Zhao R, Chen J, Liao Y, Long Q, Meng Y. Promoting reactive oxygen species accumulation to overcome tyrosine kinase inhibitor resistance in cancer. Cancer Cell Int 2024; 24:239. [PMID: 38982494 PMCID: PMC11234736 DOI: 10.1186/s12935-024-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND In tumor treatment, protein tyrosine kinase inhibitors (TKIs) have been extensively utilized. However, the efficacy of TKI is significantly compromised by drug resistance. Consequently, finding an effective solution to overcome TKI resistance becomes crucial. Reactive oxygen species (ROS) are a group of highly active molecules that play important roles in targeted cancer therapy including TKI targeted therapy. In this review, we concentrate on the ROS-associated mechanisms of TKI lethality in tumors and strategies for regulating ROS to reverse TKI resistance in cancer. MAIN BODY Elevated ROS levels often manifest during TKI therapy in cancers, potentially causing organelle damage and cell death, which are critical to the success of TKIs in eradicating cancer cells. However, it is noteworthy that cancer cells might initiate resistance pathways to shield themselves from ROS-induced damage, leading to TKI resistance. Addressing this challenge involves blocking these resistance pathways, for instance, the NRF2-KEAP1 axis and protective autophagy, to promote ROS accumulation in cells, thereby resensitizing drug-resistant cancer cells to TKIs. Additional effective approaches inducing ROS generation within drug-resistant cells and providing exogenous ROS stimulation. CONCLUSION ROS play pivotal roles in the eradication of tumor cells by TKI. Harnessing the accumulation of ROS to overcome TKI resistance is an effective and widely applicable approach.
Collapse
Affiliation(s)
- Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
| | - Mingxin Diao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
| | - Jiaping Chen
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China.
| | - Qinghong Long
- Department of Internal Medicine, Renmin Hospital, Wuhan University, Wuhan, 430022, China.
| | - Yunchong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China.
| |
Collapse
|
4
|
Suwannakham P, Panajapo P, Promma P, Khrootkaew T, Kamkaew A, Sagarik K. Photoluminescence mechanisms of BF 2-formazanate dye sensitizers: a theoretical study. RSC Adv 2024; 14:20081-20092. [PMID: 38915335 PMCID: PMC11195527 DOI: 10.1039/d4ra02240h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024] Open
Abstract
Photodynamic therapy (PDT) is an alternative, minimally invasive treatment for human diseases such as cancer. PDT uses a photosensitizer to transfer photon energy directly to cellular 3O2 to generate 1O2 (Type II), the toxicity of which leads to cancer cell death. In this work, the photoluminescence mechanisms of a BF2-formazanate dye sensitizer (BF2-FORM) and its iodinated derivative (BF2-FORM-D) were studied using complementary theoretical approaches; the photoluminescence pathways in the S1 and T1 states were studied using density functional theory (DFT) and time-dependent (TD)-DFT methods, the kinetic and thermodynamic properties of the pathways using the transition state theory (TST), and the time evolution and dynamics of key processes using non-adiabatic microcanonical molecular dynamics simulations with surface-hopping dynamics (NVE-MDSH). Evaluation of the potential energy surfaces (PESs) in terms of the rotations of the phenyl rings suggested a pathway for the S1 → S0 transition for the perpendicular structure, whereas two pathways were anticipated for the T1 → S0 transition, namely, [T1 → S0]1 occurring immediately after the S1/T1 intersystem crossing (ISC) and [T1 → S0]2 occurring after the S1/T1 ISC and T1 equilibrium structure relaxation, with the T1 → S0 energy gap being comparable to the energy required for 3O2 → 1O2. The PESs also showed that because of the heavy-atom effect, BF2-FORM-D possessed a significantly smaller S1/T1 energy gap than BF2-FORM. The TST results revealed that at room temperature, BF2-FORM-D was thermodynamically more favorable than the parent molecule. Analysis of the NVE-MDSH results suggested that the librational motions of the phenyl rings play an important role in the internal conversion (IC) and ISC, and the S1/T1 ISC and T1 → S0 transitions could be enhanced by varying the irradiation wavelength and controlling the temperature. These findings can be used as guidelines to improve and/or design photosensitizers for PDT.
Collapse
Affiliation(s)
- Parichart Suwannakham
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand +66 81 8783994 +66 81 8783994
| | - Pannipa Panajapo
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand +66 81 8783994 +66 81 8783994
| | - Phorntep Promma
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand +66 81 8783994 +66 81 8783994
| | - Tunyawat Khrootkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand +66 81 8783994 +66 81 8783994
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand +66 81 8783994 +66 81 8783994
| | - Kritsana Sagarik
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand +66 81 8783994 +66 81 8783994
| |
Collapse
|
5
|
Yıldız Gül E, Aydin Karataş E, Aydin Doğan H, Yenilmez Çiftçi G, Tanrıverdi Eçik E. BODIPY precursors and their cyclotriphosphazene Derivatives: Synthesis, photochemical properties and their application in PDT. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124006. [PMID: 38350411 DOI: 10.1016/j.saa.2024.124006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Photodynamic therapy (PDT) is a treatment method consisting of common combination of oxygen, light energy and a light absorbing molecule called a photosensitizer. In this work, four new compounds consisting of BODIPY precursors and BODIPY-cyclotriphosphazene derivatives were synthesized to investigate the PDT effects. The chemical structures of the compounds were characterized and then their photophysical properties were determined by spectroscopic techniques. The precursor BODIPYs and their cyclotriphosphazene derivatives exhibited similar properties such as strong absorption intensity, high photostability and low fluorescence profile in the NIR region. Additionally, the singlet oxygen production capacities of these compounds were determined using the photobleaching technique of 1,3-diphenylisobenzofuran (DPBF) under light illumination. By introducing iodine atoms into the molecule, which are responsible for the intersystem transition (ISC) enhancement, a more efficient singlet oxygen production was achieved in both the iodinated-BODIPY and its cyclotriphosphazene derivative. Anticancer activities of the precursor BODIPYs and their cyclotriphosphazene derivatives in the absence and presence of light illumination were evaluated on cancerous cell lines (PC3 and DU145) and non-tumorigenic prostate epithelial PNT1a cell. The compounds triggered the death of cancer cell PC3 the more significantly in the presence of red light compared to the healthy cells (PNT1a).
Collapse
Affiliation(s)
- Elif Yıldız Gül
- Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Elanur Aydin Karataş
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hatice Aydin Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | | | | |
Collapse
|