Calvo-Barreiro L, Secor M, Damjanovic J, Abdel-Rahman SA, Lin YS, Gabr M. Computational Design of a Bicyclic Peptide Inhibitor Targeting the ICOS/ICOS-L Protein-Protein Interaction.
Chem Biol Drug Des 2025;
105:e70117. [PMID:
40317592 PMCID:
PMC12121478 DOI:
10.1111/cbdd.70117]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/19/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The interaction between the inducible T-cell costimulatory molecule (ICOS) and its ligand (ICOS-L) is a critical pathway in T-cell activation and immune regulation. We computationally designed a bicyclic peptide (CP5) that inhibits the ICOS/ICOS-L protein-protein interaction (PPI). Using the structural insights derived from the ICOS/ICOS-L co-crystal structure (PDB: 6X4G) and bias-exchange metadynamics simulations (BE-META), we first designed monocyclic peptide candidates containing the β-strand (residues 51-55 51YVYWQ55) of ICOS-L that interact with ICOS. Using Rosetta's flex ddG calculations and further disulfide-bond restraint, we arrived at CP5 (cyclo-RVY[CQPGWC]WVLpG) as a potential ICOS/ICOS-L inhibitor. Using dynamic light scattering (DLS), we examined the interaction between CP5 and ICOS. Importantly, we validated the ICOS/ICOS-L inhibitory activity of CP5 using both TR-FRET assay and ELISA. Notably, CP5 demonstrated satisfactory in vitro pharmacokinetic properties, such as metabolic stability and lipophilicity, positioning it as a promising candidate for further drug development. Our findings provide a foundation for future drug discovery efforts aiming to develop cyclic peptides that specifically target the ICOS/ICOS-L interaction.
Collapse