1
|
Bollu VS, Chen YC, Zhang F, Gowda K, Amin S, Sharma AK, Schell TD, Zhu J, Robertson GP. Managing telomerase and telomere dysfunction in acral melanoma. Pharmacol Res 2025; 215:107700. [PMID: 40097124 DOI: 10.1016/j.phrs.2025.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Acral Lentiginous Melanoma is a rare and aggressive subtype of melanoma that commonly affects the palms, soles, and nail beds. It is more prevalent in individuals with darker skin tones, including Asian, African, and Hispanic populations. Unlike cutaneous melanomas, acral melanoma is not associated with UV exposure and has a distinct genetic and molecular profile, underscoring the need for tailored research and treatment strategies. Standard treatments, such as surgery, chemotherapy, immunotherapy, and targeted therapies, have shown limited success for this melanoma subtype, highlighting the urgency of developing more effective interventions. Telomerase is an enzyme that extends telomeres and is a key target in acral melanoma which exhibits' high telomerase activity, driven by mutations in the telomerase reverse transcriptase TERT promoter, which contributes to uncontrolled tumor cell proliferation, cancer cell immortality, and resistance to conventional therapies. Therefore, targeting telomerase presents a promising therapeutic avenue for acral melanoma patients who do not respond well to current treatments. Several approaches for targeting telomerase deregulation have been developed, and their potential for the management of acral melanoma is discussed in this review. Specifically, the promise of telomerase-targeted therapies for acral melanoma is emphasized and explores how these strategies could improve outcomes for patients with this challenging skin cancer. By focusing on the role of telomerase in tumorigenesis and treatment resistance, telomerase-targeted strategies hold potential as a foundational component of therapies for acral melanoma, complementing existing approaches.
Collapse
Affiliation(s)
- Vishnu Sravan Bollu
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Yu-Chi Chen
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Fan Zhang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA 99202, United States
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Arun K Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jiyue Zhu
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA 99202, United States
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Foreman Foundation for Melanoma Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Melanoma and Skin Cancer Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Melanoma Therapeutics Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
2
|
Iwata M, Kosai K, Ono Y, Oki S, Mimori K, Yamanishi Y. Regulome-based characterization of drug activity across the human diseasome. NPJ Syst Biol Appl 2022; 8:44. [DOI: 10.1038/s41540-022-00255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractDrugs are expected to recover the cell system away from the impaired state to normalcy through disease treatment. However, the understanding of gene regulatory machinery underlying drug activity or disease pathogenesis is far from complete. Here, we perform large-scale regulome analysis for various diseases in terms of gene regulatory machinery. Transcriptome signatures were converted into regulome signatures of transcription factors by integrating publicly available ChIP-seq data. Regulome-based correlations between diseases and their approved drugs were much clearer than the transcriptome-based correlations. For example, an inverse correlation was observed for cancers, whereas a positive correlation was observed for immune system diseases. After demonstrating the usefulness of the regulome-based drug discovery method in terms of accuracy and applicability, we predicted new drugs for nonsmall cell lung cancer and validated the anticancer activity in vitro. The proposed method is useful for understanding disease–disease relationships and drug discovery.
Collapse
|
3
|
Sun H, Hong M, Yang Q, Li C, Zhang G, Yue Q, Ma Y, Li X, Li CZ. Visualizing the down-regulation of hTERT mRNA expression using gold-nanoflare probes and verifying the correlation with cancer cell apoptosis. Analyst 2019; 144:2994-3004. [PMID: 30892312 DOI: 10.1039/c9an00204a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human telomerase reverse transcriptase catalytic subunit (hTERT) is the rate-limiting subunit of the telomerase holoenzyme. Down-regulating the expression of hTERT mRNA by antisense oligonucleotides would reduce the expression of hTERT, inhibit telomerase activity, and impair the growth of cancer cells in vitro. In this work, we propose a locked nucleic acid-functionalized gold nanoparticle flare probe (AuNP-probe). After transferring these probes into cells by endocytosis of the gold nanoparticles, the binding process of the antisense locked nucleic acid with hTERT mRNA along with gene regulation can be visualized by fluorescence recovery of flare-sequences. A significant decline in hTERT mRNA levels and the hTERT content occurred in cancer cells after treatment with the AuNP-probes, and only approximately 25% of the original level of hTERT mRNA remained after 72 h. AuNP-probe treated cancer cells were arrested in the G1 phase of the cell cycle and underwent apoptosis; cell viability decreased obviously compared with that of telomerase-negative normal cells.
Collapse
Affiliation(s)
- Hongxiao Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Qiangqiang Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Chuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Guangzhi Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Yanhua Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xia Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Chen-Zhong Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China. and Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, 33174, USA.
| |
Collapse
|
4
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
5
|
Zhang X, Guo W, Wang X, Liu X, Huang M, Gan L, Cheng Y, Li J. Antitumor activity and inhibitory effects on cancer stem cell-like properties of Adeno-associated virus (AAV) -mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer. Oncotarget 2017; 7:22733-45. [PMID: 27009837 PMCID: PMC5008396 DOI: 10.18632/oncotarget.8174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Bmi-1 is aberrantly activated in various cancers and plays a vital role in maintaining the self-renewal of stem cells. Our previous research revealed that Bmi-1 was overexpressed in gastric cancer (GC) and it's overexpression was an independent negative prognostic factor, suggesting it can be a therapeutic target. The main purpose of this investigation was to explore the antitumor activity of Bmi-1 interference driven by its own promoter (Ad-Bmi-1i) for GC. In this study, we used adenoviral vector to deliver Bmi-1 shRNA driven by its own promoter to treat GC. Our results revealed that Ad-Bmi-1i could selectively silence Bmi-1 in GC cells which overexpress Bmi-1 and suppress the malignant phenotypes and stem-like properties of GC cells in vitro and in vivo. Moreover, direct injection of Ad-Bmi-1i into xenografts suppressed tumor growth and destroyed cancer cells in vivo. Ad-Bmi-1i inhibited the proliferation of GC cells mainly via inducing senescence in vitro, but it suppressed tumor through inducing senescence and apoptosis, and inhibiting angiogenesis in vivo. Bmi-1 knockdown by Ad-Bmi-1i downregulated VEGF via inhibiting AKT activity. These results suggest that Ad-Bmi-1i not only inhibits tumor growth and stem cell-like phenotype by inducing cellular senescence directly, but also has an indirect anti-tumor activity by anti-angiogenesis effects via regulating PTEN/AKT/VEGF pathway. Transfer of gene interference guided by its own promoter by an adeno-associated virus (AAV) vector might be a potent antitumor approach for cancer therapy.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Gan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yufan Cheng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Tianyou Hospital of Tongji University, Shanghai, China
| |
Collapse
|
6
|
Zhang Z, Jiao Y, Zhu M, Zhang S. Nuclear-Shell Biopolymers Initiated by Telomere Elongation for Individual Cancer Cell Imaging and Drug Delivery. Anal Chem 2017; 89:4320-4327. [DOI: 10.1021/acs.analchem.7b00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhen Zhang
- Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yuting Jiao
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengting Zhu
- Shandong
Province Key Laboratory of Life-Organic Analysis, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
| | - Shusheng Zhang
- Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
7
|
Li C, Hu CJ, Tang B, Yong X, Luo G, Wu YY, Wang SM, Yu ST, Yang SM. MR molecular imaging of tumors based on an optimal hTERT promoter tyrosinase expression system. Oncotarget 2016; 7:42474-42484. [PMID: 27283901 PMCID: PMC5173149 DOI: 10.18632/oncotarget.9888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/13/2016] [Indexed: 12/01/2022] Open
Abstract
The early diagnosis and treatment of tumors is of vital significance to increase patient survival. Therefore, we constructed a lentiviral vector expressing tyrosinase (TYR) driven by an optimized human telomerase reverse transcriptase (hTERT) promoter or a cytomegalovirus(CMV) promoter in the hopes of performing noninvasive and real-time tumor-specific imaging. First, hTERT-TYR and CMV-TYR were constructed to infect cancer cell lines (telomerase-negative cell line: U2OS; telomerase-positive cell lines: SGC-7901, SW480 and HepG2). Subsequently, stable tyrosinase-expressing cell lines were sorted by flow cytometry out of these infected cancer cell lines. Then, the mRNA and protein levels of tyrosinase were analyzed. Thetyrosinase activity, melanin production and ferric ion adsorption were measured followed by an MR scan. Consequently the results showed that tyrosinase was only expressed in telomerase-positive tumor cells infected by hTERT-TYR, whereas tyrosinase was expressed in both telomerase-negative and telomerase-positive tumor cells infected by CMV-TYR. Finally, we performed in vivo tumor MR using a clinical 3T MR scanner and found increased signals at T1W1 from telomerase-positive cells infected by hTERT-TYR, which revealed that MR scanning could distinguish cells with hTERT -positive cells from hTERT-negative cells infected with the optimized lentivirus. The mechanism underlying this effect is that tyrosinase promotes melanin production and ferric ion adsorption only in hTERT-expressing cells. Taken together, these data show that this optimized hTERT promoter-driving tyrosinase expression system might be a useful diagnostic tool for the detection of tumors using MR imaging.
Collapse
Affiliation(s)
- Chuan Li
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China.,Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Gang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yu-Yun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Su-Min Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Song-Tao Yu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China.,Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
8
|
Xu Y, Goldkorn A. Telomere and Telomerase Therapeutics in Cancer. Genes (Basel) 2016; 7:genes7060022. [PMID: 27240403 PMCID: PMC4929421 DOI: 10.3390/genes7060022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
Telomerase is a reverse transcriptase capable of utilizing an integrated RNA component as a template to add protective tandem telomeric single strand DNA repeats, TTAGGG, to the ends of chromosomes. Telomere dysfunction and telomerase reactivation are observed in approximately 90% of human cancers; hence, telomerase activation plays a unique role as a nearly universal step on the path to malignancy. In the past two decades, multiple telomerase targeting therapeutic strategies have been pursued, including direct telomerase inhibition, telomerase interference, hTERT or hTERC promoter driven therapy, telomere-based approaches, and telomerase vaccines. Many of these strategies have entered clinical development, and some have now advanced to phase III clinical trials. In the coming years, one or more of these new telomerase-targeting drugs may be expected to enter the pharmacopeia of standard care. Here, we briefly review the molecular functions of telomerase in cancer and provide an update about the preclinical and clinical development of telomerase targeting therapeutics.
Collapse
Affiliation(s)
- Yucheng Xu
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
9
|
Lü MH, Tang B, Zeng S, Hu CJ, Xie R, Wu YY, Wang SM, He FT, Yang SM. Long noncoding RNA BC032469, a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer. Oncogene 2015; 35:3524-34. [PMID: 26549025 DOI: 10.1038/onc.2015.413] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation and are associated with the development of cancers. To investigate the important role and mechanism of lncRNAs in the progression of gastric cancer, we screened lncRNAs in gastric cancer tissues and corresponding adjacent tissues, and assessed the effects on gastric cancer. Here, we report that BC032469, a novel lncRNA, expressed highly in gastric cancer tissues, and the upregulation was clinically associated with larger tumor size, poor differentiation and shorter survival of gastric cancer patients. Downregulation of BC032469 resulted in a significant inhibition of proliferation in vitro and in vivo. Mechanistically, BC032469 could directly bind to miR-1207-5p and effectively functioned as a sponge for miR-1207-5p to modulate the derepression of hTERT. Thus, BC032469 may function as a ceRNA to impair miR-1207-5p-dependent hTERT downregulation, suggesting that it may be clinically valuable as a poor prognostic biomarker of gastric cancer.
Collapse
Affiliation(s)
- M-H Lü
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, China
| | - B Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - S Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - C-J Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - R Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Y-Y Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - S-M Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - F-T He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - S-M Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Chen L, Lü MH, Zhang D, Hao NB, Fan YH, Wu YY, Wang SM, Xie R, Fang DC, Zhang H, Hu CJ, Yang SM. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis 2014; 5:e1034. [PMID: 24481448 PMCID: PMC4040688 DOI: 10.1038/cddis.2013.553] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
hTERT is the catalytic subunit of the telomerase complex. Elevated expression of hTERT is associated with the expansion and metastasis of gastric tumor. In this study, we aimed to identify novel tumor suppressor miRNAs that restrain hTERT expression. We began our screen for hTERT-targeting miRNAs with a miRNA microarray. miRNA candidates were further filtered by bioinformatic analysis, general expression pattern in different cell lines, gain-of-function effects on hTERT protein and the potential of these effects to suppress hTERT 3′ untranslated region (3′UTR) luciferase activity. The clinical relevance of two miRNAs (miR-1207-5p and miR-1266) was evaluated by real-time RT-PCR. The effects of these miRNAs on cell growth, cell cycle and invasion of gastric cancer cells were measured with CCK-8, flow cytometry and transwell assays. Finally, the ability of these miRNAs to suppress the transplanted tumors was also investigated. Fourteen miRNAs were identified using a combination of bioinformatics and miRNA microarray analysis. Of these fourteen miRNAs, nine were expressed at significantly lower levels in hTERT-positive cell lines compared with hTERT-negative cell lines and five could downregulate hTERT protein expression. Only miR-1207-5p and miR-1266 interacted with the 3′ UTR of hTERT and the expression levels of these two miRNAs were significantly decreased in gastric cancer tissues. These two miRNAs also inhibited gastric tumor growth in vitro and in vivo. Altogether, miR-1207-5p and miR-1266 were determined to be hTERT suppressors in gastric cancer, and the delivery of these two miRNAs represents a novel therapeutic strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- L Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - M-H Lü
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - D Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - N-B Hao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Y-H Fan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Y-Y Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - S-M Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - R Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - D-C Fang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400037, China
| | - H Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400037, China
| | - C-J Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - S-M Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
11
|
Qian R, Ding L, Ju H. Switchable Fluorescent Imaging of Intracellular Telomerase Activity Using Telomerase-Responsive Mesoporous Silica Nanoparticle. J Am Chem Soc 2013; 135:13282-5. [DOI: 10.1021/ja406532e] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruocan Qian
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
12
|
Telomerase and the search for the end of cancer. Trends Mol Med 2013; 19:125-33. [DOI: 10.1016/j.molmed.2012.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/11/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022]
|
13
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
ZHANG NIANQU, ZHAO LEI, MA SHUAI, GU MING, ZHENG XINYU. Lentivirus-mediated expression of Drosophila melanogaster deoxyribonucleoside kinase driven by the hTERT promoter combined with gemcitabine: A potential strategy for cancer therapy. Int J Mol Med 2012; 30:659-65. [DOI: 10.3892/ijmm.2012.1033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/28/2012] [Indexed: 11/05/2022] Open
|
15
|
Ding M, Zhang E, He R, Wang X, Li R, Wang W, Yi Q. The radiation dose-regulated AND gate genetic circuit, a novel targeted and real-time monitoring strategy for cancer gene therapy. Cancer Gene Ther 2012; 19:382-92. [PMID: 22498721 DOI: 10.1038/cgt.2012.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The AND gate functions such that when all inputs are activated the downstream gene will be transcribed and it is off otherwise. To accomplish optimal and targeted gene therapy in solid tumor patients, we have constructed an AND gate genetic circuit and investigated whether it could be activated by low-dose radiation in vitro and in vivo. The enhancement green fluorescent protein (EGFP) expression in different tumor cells transfected with control vector plxsn-EGFP confirmed that 2 Gy of radiation and 1% O(2) for 3 h could activate our AND gate. Besides, the obvious different levels of EGFP expression between 2 and 6 Gy of radiation demonstrated that the AND gate could be regulated by radiation doses. Additionally, through EGFP expression and the codistribution of p53 and HIF-1α in xenografts, we illustrated the targeted activation property of the AND gate and real-time monitoring to hypoxic districts in vivo. Moreover, significant growth inhibition and cell cycle arrest in vitro and apoptosis-inducing effects in vitro and in vivo proved that the AND gate induced ideal antitumor effects. In conclusion, the radiation dose-regulated AND gate genetic circuit could not only effectively monitor the therapeutic process in real-time but also induce ideal antitumor efficacy, and can be further exploited for personal therapy in clinical tumor patients.
Collapse
Affiliation(s)
- M Ding
- Department of Cardiology, Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|