1
|
Abe H, Kawahara A, Akiba J, Yamaguchi R. Advances in diagnostic liquid-based cytology. Cytopathology 2024; 35:682-694. [PMID: 38837293 DOI: 10.1111/cyt.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Liquid-based cytology (LBC) has changed the landscape of gynaecological cytology. A growing demand exists for LBC in diagnostic cytology, particularly for ancillary testing, such as immunocytochemistry and molecular testing. Ancillary testing solely based on conventional preparation (CP) methods remains challenging. Recently, the increased demand for specialist testing and minimally invasive techniques, such as endoscopic ultrasonography fine-needle aspiration, to obtain cellular samples has led to an increasing demand for ancillary testing on cytology LBC supernatant, slides and cell block (CB). This facilitates the diagnosis and prognosis in cytology samples enabling personalized treatment. An understanding of the history and future prospects of LBC is crucial for its application in routine diagnostics by cytopathologists and cytotechnologists. In this review, we initiated an internet search using the keyword 'liquid-based cytology', and we conducted a literature review to discuss the usefulness of combined diagnosis of LBC and CP, immunocytochemistry and molecular testing and assessed the quality of nucleic acids in diagnostic LBC. High-quality and cell-rich diagnostic LBC surpassed the CP method alone in terms of reliability and versatility of ancillary testing in cytological diagnosis. Conclusively, diagnostic LBC lends itself to various new technologies and is expected to continue evolving with innovations in the future.
Collapse
Affiliation(s)
- Hideyuki Abe
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Rin Yamaguchi
- Department of Diagnostic Pathology, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
2
|
Kang SL, Kwon JY, Kim SM. Companion Diagnostics (CDx) Based on Molecular Biology Techniques. Life (Basel) 2024; 14:1358. [PMID: 39598157 PMCID: PMC11595734 DOI: 10.3390/life14111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Molecular profiling based on genomic mutations provides clinically important diagnostic and prognostic information. Companion diagnostic (CDx) testing, which is based on targeted drug therapy, is being applied to a variety of molecular diagnostic techniques (e.g., fluorescent in situ hybridization-FISH; polymerase chain reaction-PCR; and next-generation sequencing-NGS) to diagnose complex etiologies using a minimal number of specimens, replacing immunohistochemical analysis, which may show bias at certain stages. The safety and effectiveness of CDx testing using molecular diagnostic technology in precision medicine is an important factor in determining the treatment outcome and prognosis of patients. Meeting minimum safety and effectiveness performance standards is essential for CDx testing, and a thorough understanding of regulatory considerations is necessary to plan and design the optimal product. In this review, we focus on the diagnostic field of precision medicine and discuss the safety and effectiveness that each molecular diagnostic technology must meet according to CDx testing diversity.
Collapse
Affiliation(s)
- Su Lim Kang
- Department of Medical Device and Healthcare, Dongguk University-Seoul 26, Pil-dong 3-ga, Jung-gu, Seoul 04620, Republic of Korea; (S.L.K.); (J.Y.K.)
| | - Ji Yean Kwon
- Department of Medical Device and Healthcare, Dongguk University-Seoul 26, Pil-dong 3-ga, Jung-gu, Seoul 04620, Republic of Korea; (S.L.K.); (J.Y.K.)
- Department of Regulatory Science for Bio-Health Medical Device, Dongguk University-Seoul 26, Pil-dong 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| | - Sung Min Kim
- Department of Medical Device and Healthcare, Dongguk University-Seoul 26, Pil-dong 3-ga, Jung-gu, Seoul 04620, Republic of Korea; (S.L.K.); (J.Y.K.)
- Department of Regulatory Science for Bio-Health Medical Device, Dongguk University-Seoul 26, Pil-dong 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Nishimura T, Fujiwara T, Fujimoto H. When and how should next-generation sequencing and comprehensive genomic profiling assays be performed? Cancer Sci 2024; 115:3194-3195. [PMID: 38992959 PMCID: PMC11463086 DOI: 10.1111/cas.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Affiliation(s)
- Tadashi Nishimura
- Department of Pulmonary MedicineMie Chuo Medical CenterTsu CityMieJapan
- Department of Pulmonary and Critical Care MedicineMie University Faculty and Graduate School of MedicineTsuMieJapan
| | - Takumi Fujiwara
- Department of Pulmonary and Critical Care MedicineMie University Faculty and Graduate School of MedicineTsuMieJapan
- Department of Genomic MedicineMie University HospitalTsuJapan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care MedicineMie University Faculty and Graduate School of MedicineTsuMieJapan
| |
Collapse
|
4
|
Nagakubo Y, Hirotsu Y, Yoshino M, Amemiya K, Saito R, Kakizaki Y, Tsutsui T, Miyashita Y, Goto T, Omata M. Comparison of diagnostic performance between Oncomine Dx target test and AmoyDx panel for detecting actionable mutations in lung cancer. Sci Rep 2024; 14:12480. [PMID: 38816489 PMCID: PMC11139982 DOI: 10.1038/s41598-024-62857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Companion diagnostic (CDx) tests play important roles in identifying oncogenic driver genes and tailoring effective molecularly targeted therapies for lung cancer patients. In Japan, the Oncomine Dx target test (ODxTT) and the AmoyDx pan lung cancer PCR panel (AmoyDx) are prominent CDx tests and only one of these tests is covered by the domestic insurance system. However, these CDx tests cover different target regions and apply different technologies (ODxTT is amplicon-based next-generation sequencing and AmoyDx is multiplex PCR-based assay), which may lead to missing of actionable mutations affecting patient prognosis. Here, we performed a direct comparison analysis of 1059 genetic alterations of eight driver genes from 131 samples and evaluated the concordance between two CDx tests for detecting actionable variants and fusions. When excluding the eight uncovered variants (ODxTT: two variants, AmoyDx: six variants), the overall percent agreement was 97.6% (1026/1051) with 89.0% of overall positive percent agreement (89/100) and 98.5% of overall negative percent agreement (937/951). Of the 25 discordant genetic alterations, two were undetected despite being covered in the AmoyDx (one EGFR variant and one ROS1 fusion). Furthermore, there were potential false positives in the ODxTT (nine MET exon 14 skippings) and in the AmoyDx (five variants, six ROS1 and three RET fusions). These potential false positives in the AmoyDx likely due to non-specific amplification, which was validated by the unique molecular barcoding sequencing. The ODxTT missed two uncovered EGFR rare variants, which was visually confirmed in the raw sequencing data. Our study provides insights into real-world performance of CDx tests for lung cancer and ensures reliability to advance precision medicine.
Collapse
Affiliation(s)
- Yuki Nagakubo
- Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, 400-8506, Japan.
| | - Mona Yoshino
- Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Kenji Amemiya
- Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Ryota Saito
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yumiko Kakizaki
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Toshiharu Tsutsui
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yoshihiro Miyashita
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
Ishida M, Iwasaku M, Doi T, Ishikawa T, Tachibana Y, Sawada R, Ogura Y, Kawachi H, Katayama Y, Nishioka N, Morimoto K, Tokuda S, Yamada T, Takayama K. Nationwide data from comprehensive genomic profiling assays for detecting driver oncogenes in non-small cell lung cancer. Cancer Sci 2024; 115:1656-1664. [PMID: 38450844 DOI: 10.1111/cas.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Driver oncogenes are investigated upfront at diagnosis using multi-CDx systems with next-generation sequencing techniques or multiplex reverse-transcriptase polymerase chain reaction assays. Additionally, from 2019, comprehensive genomic profiling (CGP) assays have been available in Japan for patients with advanced solid tumors who had completed or were expected to complete standard chemotherapy. These assays are expected to comprehensively detect the driver oncogenes, especially for patients with non-small cell lung cancer (NSCLC). However, there are no reports of nationwide research on the detection of driver oncogenes in patients with advanced NSCLC who undergo CGP assays, especially in those with undetected driver oncogenes at diagnosis. In this study, we investigated the proportion of driver oncogenes detected in patients with advanced NSCLC with undetectable driver oncogenes at initial diagnosis and in all patients with advanced NSCLC who underwent CGP assays. We retrospectively analyzed data from 986 patients with advanced NSCLC who underwent CGP assays between August 2019 and March 2022, using the Center for Cancer Genomics and Advanced Therapeutics database. The proportion of driver oncogenes newly detected in patients with NSCLC who tested negative for driver oncogenes at diagnosis and in all patients with NSCLC were investigated. Driver oncogenes were detected in 451 patients (45.7%). EGFR was the most common (16.5%), followed by KRAS (14.5%). Among the 330 patients with undetected EGFR, ALK, ROS1, and BRAF V600E mutations at diagnosis, 81 patients (24.5%) had newly identified driver oncogenes. CGP assays could be useful to identify driver oncogenes in patients with advanced NSCLC, including those initially undetected, facilitating personalized treatment.
Collapse
Affiliation(s)
- Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshifumi Doi
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Tachibana
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Sawada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuri Ogura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Kerr KM, Bubendorf L, Lopez-Rios F, Khalil F, Roy-Chowdhuri S, Joubert P, Hartmann A, Guerini-Rocco E, Yatabe Y, Hofman P, Cooper WA, Dacic S. Optimizing tissue stewardship in non-small cell lung cancer to support molecular characterization and treatment selection: statement from a working group of thoracic pathologists. Histopathology 2024; 84:429-439. [PMID: 37957137 DOI: 10.1111/his.15078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023]
Abstract
Many patients with non-small cell lung cancer do not receive guideline-recommended, biomarker-directed therapy, despite the potential for improved clinical outcomes. Access to timely, accurate, and comprehensive molecular profiling, including targetable protein overexpression, is essential to allow fully informed treatment decisions to be taken. In turn, this requires optimal tissue management to protect and maximize the use of this precious finite resource. Here, a group of leading thoracic pathologists recommend factors to consider for optimal tissue management. Starting from when lung cancer is first suspected, keeping predictive biomarker testing in the front of the mind should drive the development of practices and procedures that conserve tissue appropriately to support molecular characterization and treatment selection.
Collapse
Affiliation(s)
- Keith M Kerr
- Department of Pathology, Aberdeen Royal Infirmary and Aberdeen University Medical School, Aberdeen, UK
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Fernando Lopez-Rios
- Department of Pathology, 12 de Octubre University Hospital-CIBERONC, Research Institute 12 de Octubre University Hospital (i+12), Universidad Complutense, Madrid, Spain
| | | | | | - Philippe Joubert
- Québec Heart and Lung Institute-Laval University (IUCPQ-UL), Quebec, QC, Canada
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nürnberg, Erlangen, Germany
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Paul Hofman
- Nice University Hospital, FHU OncoAge, BB-0033-00025, University Côte d'Azur, Nice, France
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
- The University of Sydney, Sydney, NSW, Australia
- Western Sydney University, Campbelltown, NSW, Australia
| | | |
Collapse
|
7
|
Hirotsu Y, Nakagomi T, Nagakubo Y, Goto T, Omata M. Simulation analysis of EGFR mutation detection: Oncomine Dx target test and AmoyDx panel impact on lung cancer treatment decisions. Sci Rep 2024; 14:1594. [PMID: 38238401 PMCID: PMC10796947 DOI: 10.1038/s41598-024-52006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Epidermal growth factor receptor (EGFR) driver mutations are crucial for treatment decisions for patients with non-small cell lung cancer (NSCLC). This study aimed to assess the differences in EGFR mutation detection between two companion diagnostic (CDx) tests-the Oncomine Dx Target Test (ODxTT) and the AmoyDx Pan Lung Cancer PCR Panel-and their impact on treatment applicability. To this end, we used an in-house targeted sequencing dataset of 282 samples from 127 EGFR-mutated NSCLC patients to simulate the concordance between the EGFR variants targeted by the ODxTT and AmoyDx panel, the oncogenicity of the variants, and their therapeutic potential. Of the 216 EGFR mutations identified by the in-house panel, 51% were detectable by both CDx tests, 3% were specific to ODxTT, and 46% were not targeted by either test. Most non-targeted mutations did not have oncogenicity and were located outside exons 18-21. Notably, 95% of the mutations detectable by both tests had potential oncogenicity. Furthermore, among the 96 patients harboring actionable EGFR mutations, 97% had mutations detectable by both CDx tests and 1% by ODxTT, while 2% had mutations not covered by either test. These findings suggest that while both CDx tests are effective in detecting almost all actionable EGFR mutations, ODxTT provides slightly broader coverage. These results emphasize the importance of selecting appropriate CDx tests to inform treatment decisions for EGFR-positive NSCLC patients.
Collapse
Affiliation(s)
- Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, 400-8506, Japan.
| | - Takahiro Nakagomi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yuki Nagakubo
- Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Amemiya K, Hirotsu Y, Nagakubo Y, Mochizuki H, Oyama T, Omata M. Influence of formalin fixation duration on RNA quality and quantity from formalin-fixed paraffin-embedded hepatocellular carcinoma tissues. Pathol Int 2023; 73:593-600. [PMID: 37933792 DOI: 10.1111/pin.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023]
Abstract
Analyzing RNA samples from formalin-fixed paraffin-embedded (FFPE) tissues is essential for precision medicine. We investigated RNA quantity and quality from FFPE tumor tissues fixed in formalin for various times and compared sequencing metrics from next-generation sequencing (NGS). Hepatocellular carcinoma (HCC) tissues were fixed in 10% neutral buffered formalin (1-240 h) and FFPE blocks were prepared. Total RNA was extracted, and the quantity and quality were assessed using the NanoDrop, Qubit and Bioanalyzer. After preparing sequencing libraries, NGS was performed on the Oncomine Dx Multi-CDx system. Total RNA yields of all samples met the threshold required for NGS, but longer fixation times resulted in decreased total RNA and long RNA fragment (>200 nt) yields. NGS analysis showed fewer sequencing reads of internal control genes from RNA with longer fixation times. RNA extracted from FFPE blocks stored for 500 days had reduced RNA yield and quality compared with RNA obtained from FFPE blocks prepared immediately. In conclusion, short and over-fixation should be avoided because of their negative impact on sequencing quality. Fixation process should be finished promptly within recommended guidelines (6-72 h) for cancer patients.
Collapse
Affiliation(s)
- Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yuki Nagakubo
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Toshio Oyama
- Pathology Division, Laboratory Department, Yamanashi Prefectural Central Hospital, Yamanashi, Japan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Nagakubo Y, Hirotsu Y, Amemiya K, Mochizuki H, Tsutsui T, Kakizaki Y, Miyashita Y, Higuchi R, Nakagomi T, Goto T, Oyama T, Omata M. Nucleic Acid Quality Assessment is Critical to the Success of the Oncomine Dx Target Test for Lung Cancer. Mol Diagn Ther 2023; 27:513-523. [PMID: 37198423 DOI: 10.1007/s40291-023-00653-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND OBJECTIVE The Oncomine Dx Target Test (ODxTT) has been used as a companion diagnostic test for lung cancer. Here, we evaluated whether the amount of nucleic acid and the degree of RNA degradation are related to the success of the ODxTT. METHODS This study included 223 samples from 218 patients with lung cancer. For all samples, DNA and RNA concentrations were quantified using Qubit, and the degree of RNA degradation was evaluated using the Bioanalyzer. RESULTS Of the 223 samples, 219 samples were successfully analyzed in the ODxTT and four were not. DNA analysis failed in two samples, which were attributed to low DNA concentrations and both were cytology specimens. Meanwhile, RNA analysis failed in the other two samples. These samples had sufficient amounts of RNA, but it was highly degraded with DV200 (the percentage of RNA fragments > 200 base pairs) less than 30. Compared with RNA samples with DV200 ≥ 30, analysis of RNA with DV200 < 30 yielded significantly fewer reads for the internal control genes. This test showed actionable mutations were identified in 38% (83/218) of all patients and in 46.6% (76/163) of patients with lung adenocarcinoma. CONCLUSIONS DNA concentration and degree of RNA degradation are key factors determining the success of diagnostic testing by the ODxTT.
Collapse
Affiliation(s)
- Yuki Nagakubo
- Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, 400-8506, Japan.
| | - Kenji Amemiya
- Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, 400-8506, Japan
- Central Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
- Department of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Toshiharu Tsutsui
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yumiko Kakizaki
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yoshihiro Miyashita
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Rumi Higuchi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Takahiro Nakagomi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Toshio Oyama
- Pathology Division, Laboratory Department, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Amemiya K, Hirotsu Y, Mochizuki H, Higuchi R, Nakagomi T, Goto T, Oyama T, Kondo T, Omata M. Deep targeted sequencing of cytological tumor cells using whole genome amplification. Cancer Cytopathol 2023; 131:58-68. [PMID: 36219530 DOI: 10.1002/cncy.22653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Genomic profiling in lung cancer is essential for precision medicine. Cytological specimens provide an alternative to formalin-fixed paraffin-embedded (FFPE) samples for comprehensive genomic analysis. However, this approach remains challenging when a limited number of tumor cells are available. We applied whole genome amplification (WGA) to cytology specimens to overcome this limitation. METHODS Using a lung cancer panel targeting 58 genes, we performed next-generation sequencing of whole genome-amplified DNA extracted from cytological specimens containing 10-20 tumor cells (cyto-WGA) and DNA from corresponding FFPE tumor tissue. We compared sequencing data from cyto-WGA and FFPE samples to examine the detection accuracy of copy number variations and oncogenic and drug-matched variants. RESULTS The DNA quality and quantity from cyto-WGA were higher than those from FFPE samples (p < .0005 and p < .05, respectively). Sequencing metrics of cyto-WGA and FFPE tissues showed no difference in the number of mapped reads and mean coverage depth, but there were significant differences in the on-target rate (p < .05) and uniformity (p < .0005). Copy number variations in cyto-WGA samples (n = 211) were higher than in FFPE samples (n = 9) (p < .0001). Fourty nine oncogenic variants were detected in cyto-WGA and 39 in FFPE. Of these variants, 34 (63%) were present in both samples. In addition, all 16 drug-matched variants were detected in FFPE and cyto-WGA samples with 100% concordance. CONCLUSION Cyto-WGA can be a feasible and alternative method to detect oncogenic and drug-matched variants.
Collapse
Affiliation(s)
- Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan.,Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, Kofu, Yamanashi, Japan.,Department of Pathology, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Rumi Higuchi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Takahiro Nakagomi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi, Japan
| | - Toshio Oyama
- Pathology Division, Laboratory Department, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of Pathology, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Kofu, Yamanashi, Japan.,The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
SHIMODA Y, NAGASHIMA T, URAKAMI K, KAMADA F, NAKATANI S, MIZUGUCHI M, SERIZAWA M, HATAKEYAMA K, OHSHIMA K, MOCHIZUKI T, OHNAMI S, OHNAMI S, KAWAKAMI T, YAMAZAKI K, MURAKAMI H, KENMOTSU H, SHIOMI A, AKIYAMA Y, YAMAGUCHI K. Development of two 410-cancer-gene panel tests for solid tumors and liquid biopsy based on genome data of 5,143 Japanese cancer patients. Biomed Res 2022; 43:115-126. [DOI: 10.2220/biomedres.43.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuji SHIMODA
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Takeshi NAGASHIMA
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Kenichi URAKAMI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Fukumi KAMADA
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Sou NAKATANI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Maki MIZUGUCHI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Masakuni SERIZAWA
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute
| | | | - Keiichi OHSHIMA
- Medical Genetics Division, Shizuoka Cancer Center Research Institute
| | - Tohru MOCHIZUKI
- Medical Genetics Division, Shizuoka Cancer Center Research Institute
| | - Sumiko OHNAMI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Shumpei OHNAMI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | | | | | | | | | - Akio SHIOMI
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center
| | - Yasuto AKIYAMA
- Immunotherapy Division, Shizuoka Cancer Center Research Institute
| | | |
Collapse
|
12
|
Otake S, Goto T, Higuchi R, Nakagomi T, Hirotsu Y, Amemiya K, Oyama T, Mochizuki H, Omata M. The Diagnostic Utility of Cell-Free DNA from Ex Vivo Bronchoalveolar Lavage Fluid in Lung Cancer. Cancers (Basel) 2022; 14:cancers14071764. [PMID: 35406535 PMCID: PMC8996852 DOI: 10.3390/cancers14071764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary This study aims to detect cell-free DNA released from lung cancer cells into the airway using the ex vivo BAL model of our own establishing. We finally demonstrated that cell-free DNA released from lung cancer cells is more abundant in the airway than in the blood, and the efficient collection of cell-free DNA derived from lung cancer in the airway by BAL and its genomic analysis could allow the accurate diagnosis of lung cancer. We believe that this approach will possibly make a breakthrough in the currently unsatisfactory diagnostic yield for lung cancer, since it is a new and constitutive diagnostic focusing on the gene mutations of lung cancer and their release into the airway in the form of cell-free DNA. Abstract Although bronchoscopy is generally performed to diagnose lung cancer, its diagnostic yield remains unsatisfactory. Assuming that lung cancer cells release cell-free DNA into the epithelial lining fluid, we hypothesized that lung cancer could be diagnosed by analyzing gene mutations in cell-free DNA in this fluid. This study included 32 patients with lung cancer who underwent surgery at our hospital. Bronchoalveolar lavage (BAL) was performed on the resected lung samples (ex vivo BAL model) after lobectomy. Each DNA sample (i.e., BAL fluid, primary lesion, and plasma) underwent deep targeted sequencing. Gene mutation analyses in the BAL fluid samples identified mutations identical to those in the primary lesions in 30 (93.8%) of 32 patients. In contrast, the microscopic cytology of the same BAL fluid samples yielded a diagnosis of lung cancer in only one of 32 patients, and the analysis of plasma samples revealed gene mutations identical to those in the primary lesions in only one of 32 patients. In conclusion, cell-free DNA released from lung cancer cells exists more abundantly in the airway than in the blood. The collection and analysis of the BAL fluid containing cell-free DNA derived from lung cancer can thus allow lung cancer diagnosis and the screening of driver mutations.
Collapse
Affiliation(s)
- Sotaro Otake
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (S.O.); (R.H.); (T.N.)
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (S.O.); (R.H.); (T.N.)
- Correspondence: ; Tel.: +81-55-253-71111
| | - Rumi Higuchi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (S.O.); (R.H.); (T.N.)
| | - Takahiro Nakagomi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (S.O.); (R.H.); (T.N.)
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (K.A.); (H.M.); (M.O.)
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (K.A.); (H.M.); (M.O.)
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Yamanashi 400-8506, Japan;
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (K.A.); (H.M.); (M.O.)
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (K.A.); (H.M.); (M.O.)
- Department of Gastroenterology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| |
Collapse
|
13
|
Kazdal D, Hofman V, Christopoulos P, Ilié M, Stenzinger A, Hofman P. Fusion-positive non-small cell lung carcinoma: Biological principles, clinical practice, and diagnostic implications. Genes Chromosomes Cancer 2022; 61:244-260. [PMID: 34997651 DOI: 10.1002/gcc.23022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Based on superior efficacy and tolerability, targeted therapy is currently preferred over chemotherapy and/or immunotherapy for actionable gene fusions that occur in late-stage non-small cell lung carcinoma (NSCLC). Consequently, current clinical practice guidelines mandate testing for ALK, ROS1, NTRK, and RET gene fusions in all patients with newly diagnosed advanced non-squamous NSCLC (NS-NSCLC). Gene fusions can be detected using different approaches, but today RNA next-generation sequencing (NGS) or combined DNA/RNA NGS is the method of choice. The discovery of other gene fusions (involving, eg, NRG1, NUT, FGFR1, FGFR2, MET, BRAF, EGFR, SMARC fusions) and their partners has increased progressively in recent years, leading to the development of new and promising therapies and mandating the development and implementation of comprehensive detection methods. The purpose of this review is to focus on recent data concerning the main gene fusions identified in NSCLC, followed by the discussion of major challenges in this domain.
Collapse
Affiliation(s)
- Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,Thoraxklinik and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| |
Collapse
|
14
|
What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery and clinical validation of biomarkers predictive of the response of non-squamous non-small-cell lung carcinomas (NS-NSCLC) to therapeutic strategies continue to provide new data. The evaluation of novel treatments is based on molecular analyses aimed at determining their efficacy. These tests are increasing in number, but the tissue specimens are smaller and smaller and/or can have few tumor cells. Indeed, in addition to tissue samples, complementary cytological and/or blood samples can also give access to these biomarkers. To date, it is recommended and necessary to look for the status of five genomic molecular biomarkers (EGFR, ALK, ROS1, BRAFV600, NTRK) and of a protein biomarker (PD-L1). However, the short- and more or less long-term emergence of new targeted treatments of genomic alterations on RET and MET, but also on others’ genomic alteration, notably on KRAS, HER2, NRG1, SMARCA4, and NUT, have made cellular and blood samples essential for molecular testing. The aim of this review is to present the interest in using cytological and/or liquid biopsies as complementary biological material, or as an alternative to tissue specimens, for detection at diagnosis of new predictive biomarkers of NS-NSCLC.
Collapse
|