1
|
Haffner MC, Morris MJ, Ding CKC, Sayar E, Mehra R, Robinson B, True LD, Gleave M, Lotan TL, Aggarwal R, Huang J, Loda M, Nelson PS, Rubin MA, Beltran H. Framework for the Pathology Workup of Metastatic Castration-Resistant Prostate Cancer Biopsies. Clin Cancer Res 2025; 31:466-478. [PMID: 39589343 PMCID: PMC11790385 DOI: 10.1158/1078-0432.ccr-24-2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Lineage plasticity and histologic transformation from prostate adenocarcinoma to neuroendocrine (NE) prostate cancer (NEPC) occur in up to 15% to 20% of patients with castration-resistant prostate cancer (CRPC) as a mechanism of treatment resistance and are associated with aggressive disease and poor prognosis. NEPC tumors typically display small cell carcinoma morphology with loss of androgen receptor (AR) expression and gain of NE lineage markers. However, there is a spectrum of phenotypes that are observed during the lineage plasticity process, and the clinical significance of mixed histologies or those that co-express AR and NE markers or lack all markers is not well defined. Translational research studies investigating NEPC have used variable definitions, making clinical trial design challenging. In this manuscript, we discuss the diagnostic workup of metastatic biopsies to help guide the reproducible classification of phenotypic CRPC subtypes. We recommend classifying CRPC tumors based on histomorphology (adenocarcinoma, small cell carcinoma, poorly differentiated carcinoma, other morphologic variant, or mixed morphology) and IHC markers with a priority for AR, NK3 homeobox 1, insulinoma-associated protein 1, synaptophysin, and cell proliferation based on Ki-67 positivity, with additional markers to be considered based on the clinical context. Ultimately, a unified workup of metastatic CRPC biopsies can improve clinical trial design and eventually practice.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chien-Kuang C. Ding
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Erolcan Sayar
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Tamara L. Lotan
- Departments of Pathology, Urology, Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rahul Aggarwal
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jiaoti Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mark A. Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
2
|
Daniels VA, Luo J, Paller CJ, Kanayama M. Therapeutic Approaches to Targeting Androgen Receptor Splice Variants. Cells 2024; 13:104. [PMID: 38201308 PMCID: PMC10778271 DOI: 10.3390/cells13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Therapeutic options for advanced prostate cancer have vastly expanded over the last decade and will continue to expand in the future. Drugs targeting the androgen receptor (AR) signaling pathway, i.e., androgen receptor targeting agents (ARTAs), remain the mainstream treatments that are increasingly transforming the disease into one that can be controlled for an extended period of time. Prostate cancer is inherently addicted to AR. Under the treatment pressure of ARTA, molecular alterations occur, leading to the clonal expansion of resistant cells in a disease state broadly categorized as castration-resistant prostate cancer (CRPC). One castration resistance mechanism involves AR splice variants (AR-Vs) lacking the ligand-binding domain. Some AR-Vs have been identified as constitutively active, capable of activating AR signaling pathways without androgenic ligands. Among these variants, AR-V7 is the most extensively studied and may be measured non-invasively using validated circulating tumor cell (CTC) tests. In the context of the evolving prostate cancer treatment landscape, novel agents are developed and evaluated for their efficacy in targeting AR-V7. In patients with metastatic CRPC (mCRPC), the availability of the AR-V7 tests will make it possible to determine whether the treatments are effective for CTC AR-V7-positive disease, even though the treatments may not be specifically designed to target AR-V7. In this review, we will first outline the current prostate cancer treatment landscape, followed by an in-depth review of relatively newer prostate cancer therapeutics, focusing on AR-targeting agents under clinical development. These drugs are categorized from the standpoint of their activities against AR-V7 through direct or indirect mechanisms.
Collapse
Affiliation(s)
- Violet A. Daniels
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.A.D.); (J.L.)
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.A.D.); (J.L.)
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Channing J. Paller
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mayuko Kanayama
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.A.D.); (J.L.)
| |
Collapse
|
3
|
Song B, Luo Y, Li Q, Pan H, Li D. Experience and Lessons Learned in the Treatment of Transforming Small Cell Neuroendocrine Carcinoma of the Prostate: A Case Report and Literature Review. Case Rep Oncol 2024; 17:247-255. [PMID: 38357684 PMCID: PMC10866612 DOI: 10.1159/000536351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Small cell neuroendocrine carcinoma of the prostate (SCNECP) is a rare and highly malignant tumor that commonly transforms into conventional prostate adenocarcinoma (CPAC). Most of SCNECP cases cannot be detected and diagnosed early, and SCNECP is often diagnosed when there is liver and lung metastasis. Therefore, the early detection of the process from CPAC to SCNECP is crucial. Case Report We present a case of a 73-year-old man who was initially admitted to our hospital with metastatic CPAC. He was administered goserelin acetate 3.6 mg combined with bicalutamide tablets (50 mg) once daily for endocrine therapy and docetaxel (100 mg) combined with prednisone (5 mg) twice a day. After treatment, the prostate-specific antigen (PSA) level decreased significantly, but the CEA, CA199, and CA125 levels began to increase progressively after a short decline. However, no solid tumor recurrence was observed in multiple reexaminations. It was not until 9 months after the elevation of tumor markers that multiple metastatic lesions appeared in the liver, which finally confirmed the diagnosis of metastatic SCNECP. After chemotherapy with etoposide 360 mg combined with carboplatin 200 mg, the tumor size was significantly reduced, and tumor markers decreased. However, the remission time was only 3 months. The patient's liver metastases continued to grow, and CEA, CA199, and CA125 levels continued to increase. Conclusion During CPAC treatment, PSA levels continued to decrease, whereas CEA, CA199, and CA125 levels continued to increase. This suggests the possibility of the transformation of CPAC into SCNECP.
Collapse
Affiliation(s)
- Binbin Song
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| | - Yan Luo
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| | - Qing Li
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| | - Hong Pan
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| | - Dong Li
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|