1
|
Hirono M, Karube F, Yanagawa Y. Modulatory Effects of Monoamines and Perineuronal Nets on Output of Cerebellar Purkinje Cells. Front Neural Circuits 2021; 15:661899. [PMID: 34194302 PMCID: PMC8236809 DOI: 10.3389/fncir.2021.661899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Classically, the cerebellum has been thought to play a significant role in motor coordination. However, a growing body of evidence for novel neural connections between the cerebellum and various brain regions indicates that the cerebellum also contributes to other brain functions implicated in reward, language, and social behavior. Cerebellar Purkinje cells (PCs) make inhibitory GABAergic synapses with their target neurons: other PCs and Lugaro/globular cells via PC axon collaterals, and neurons in the deep cerebellar nuclei (DCN) via PC primary axons. PC-Lugaro/globular cell connections form a cerebellar cortical microcircuit, which is driven by serotonin and noradrenaline. PCs' primary outputs control not only firing but also synaptic plasticity of DCN neurons following the integration of excitatory and inhibitory inputs in the cerebellar cortex. Thus, strong PC-mediated inhibition is involved in cerebellar functions as a key regulator of cerebellar neural networks. In this review, we focus on physiological characteristics of GABAergic transmission from PCs. First, we introduce monoaminergic modulation of GABAergic transmission at synapses of PC-Lugaro/globular cell as well as PC-large glutamatergic DCN neuron, and a Lugaro/globular cell-incorporated microcircuit. Second, we review the physiological roles of perineuronal nets (PNNs), which are organized components of the extracellular matrix and enwrap the cell bodies and proximal processes, in GABA release from PCs to large glutamatergic DCN neurons and in cerebellar motor learning. Recent evidence suggests that alterations in PNN density in the DCN can regulate cerebellar functions.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Department of Physiology, Wakayama Medical University, Wakayama, Japan
| | - Fuyuki Karube
- Lab of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Stefen H, Hassanzadeh-Barforoushi A, Brettle M, Fok S, Suchowerska AK, Tedla N, Barber T, Warkiani ME, Fath T. A Novel Microfluidic Device-Based Neurite Outgrowth Inhibition Assay Reveals the Neurite Outgrowth-Promoting Activity of Tropomyosin Tpm3.1 in Hippocampal Neurons. Cell Mol Neurobiol 2018; 38:1557-1563. [PMID: 30218404 PMCID: PMC11469800 DOI: 10.1007/s10571-018-0620-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022]
Abstract
Overcoming neurite inhibition is integral for restoring neuronal connectivity after CNS injury. Actin dynamics are critical for neurite growth cone formation and extension. The tropomyosin family of proteins is a regarded as master regulator of actin dynamics. This study investigates tropomyosin isoform 3.1 (Tpm3.1) as a potential candidate for overcoming an inhibitory substrate, as it is known to influence neurite branching and outgrowth. We designed a microfluidic device that enables neurons to be grown adjacent to an inhibitory substrate, Nogo-66. Results show that neurons, overexpressing hTpm3.1, have an increased propensity to overcome Nogo-66 inhibition. We propose Tpm3.1 as a potential target for promoting neurite growth in an inhibitory environment in the central nervous system.
Collapse
Affiliation(s)
- Holly Stefen
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia
- Neuron Culture Core Facility (NCCF), University of New South Wales, Sydney, NSW, Australia
| | - Amin Hassanzadeh-Barforoushi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Merryn Brettle
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia
| | - Sandra Fok
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia
| | - Nicodemus Tedla
- Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tracie Barber
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow, 119991, Russia.
| | - Thomas Fath
- Neurodegenerative and Repair Unit, School of Medical Science, UNSW Sydney, Sydney, NSW, Australia.
- Neuron Culture Core Facility (NCCF), University of New South Wales, Sydney, NSW, Australia.
- Faculty of Medicine and Health Sciences, Dementia Research Centre, Macquarie University, Sydney, NSW, 2019, Australia.
| |
Collapse
|
3
|
Smedfors G, Olson L, Karlsson TE. A Nogo-Like Signaling Perspective from Birth to Adulthood and in Old Age: Brain Expression Patterns of Ligands, Receptors and Modulators. Front Mol Neurosci 2018. [PMID: 29520216 PMCID: PMC5827527 DOI: 10.3389/fnmol.2018.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An appropriate strength of Nogo-like signaling is important to maintain synaptic homeostasis in the CNS. Disturbances have been associated with schizophrenia, MS and other diseases. Blocking Nogo-like signaling may improve recovery after spinal cord injury, stroke and traumatic brain injury. To understand the interacting roles of an increasing number of ligands, receptors and modulators engaged in Nogo-like signaling, the transcriptional activity of these genes in the same brain areas from birth to old age in the normal brain is needed. Thus, we have quantitatively mapped the innate expression of 11 important genes engaged in Nogo-like signaling. Using in situ hybridization, we located and measured the amount of mRNA encoding Nogo-A, OMgp, NgR1, NgR2, NgR3, Lingo-1, Troy, Olfactomedin, LgI1, ADAM22, and MAG, in 18 different brain areas at six different ages (P0, 1, 2, 4, 14, and 104 weeks). We show gene- and area-specific activities and how the genes undergo dynamic regulation during postnatal development and become stable during adulthood. Hippocampal areas underwent the largest changes over time. We only found differences between individual cortical areas in Troy and MAG. Subcortical areas presented the largest inter-regional differences; lateral and basolateral amygdala had markedly higher expression than other subcortical areas. The widespread differences and unique expression patterns of the different genes involved in Nogo-like signaling suggest that the functional complexes could look vastly different in different areas.
Collapse
Affiliation(s)
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
4
|
Nardai S, Dobolyi A, Skopál J, Lakatos K, Merkely B, Nagy Z. Delayed Gelatinase Inhibition Induces Reticulon 4 Receptor Expression in the Peri-Infarct Cortex. J Neuropathol Exp Neurol 2016; 75:379-85. [PMID: 26945033 DOI: 10.1093/jnen/nlw011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Matrix metalloproteinase (MMP) inhibition can potentially prevent hemorrhagic transformation following cerebral infarction; however, delayed-phase MMP activity is also necessary for functional recovery after experimental stroke. We sought to identify potential mechanisms responsible for the impaired recovery associated with subacute MMP inhibition in a transient middle cerebral artery occlusion model of focal ischemia in CD rats. Gelatinase inhibition was achieved by intracerebral injection of the Fn-439 MMP inhibitor 7 days after stroke. Treatment efficacy was determined on day 9 by in situ gelatin zymography. The peri-infarct cortex was identified by triphenyl tetrazolium chloride staining, and tissue samples were dissected for TaqMan array gene-expression study. Of 84 genes known to influence poststroke regeneration, we found upregulation of mRNA for the reticulon 4 receptor (Rtn4r), a major inhibitor of regenerative nerve growth in the adult CNS, and borderline expression changes for 3 additional genes (DCC, Jun, and Ngfr). Western blot confirmed increased Rtn4r protein in the peri-infarct cortex of treated animals, and double immunolabeling showed colocalization primarily with the S100 astrocyte marker. These data suggest that increased Rtn4 receptor expression in the perilesional cortex may contribute to the impaired regeneration associated with MMP inhibition in the subacute phase of cerebral infarction.
Collapse
Affiliation(s)
- Sándor Nardai
- From the Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary (SN, JS, KL, BM, ZN); National Institute of Clinical Neurosciences, Budapest, Hungary (SN, ZN); and NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary (AD)
| | - Arpád Dobolyi
- From the Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary (SN, JS, KL, BM, ZN); National Institute of Clinical Neurosciences, Budapest, Hungary (SN, ZN); and NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary (AD)
| | - Judit Skopál
- From the Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary (SN, JS, KL, BM, ZN); National Institute of Clinical Neurosciences, Budapest, Hungary (SN, ZN); and NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary (AD)
| | - Kinga Lakatos
- From the Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary (SN, JS, KL, BM, ZN); National Institute of Clinical Neurosciences, Budapest, Hungary (SN, ZN); and NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary (AD)
| | - Béla Merkely
- From the Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary (SN, JS, KL, BM, ZN); National Institute of Clinical Neurosciences, Budapest, Hungary (SN, ZN); and NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary (AD)
| | - Zoltán Nagy
- From the Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary (SN, JS, KL, BM, ZN); National Institute of Clinical Neurosciences, Budapest, Hungary (SN, ZN); and NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary (AD).
| |
Collapse
|
5
|
Schawkat K, Di Santo S, Seiler S, Ducray AD, Widmer HR. Loss of Nogo-A-expressing neurons in a rat model of Parkinson's disease. Neuroscience 2014; 288:59-72. [PMID: 25554426 DOI: 10.1016/j.neuroscience.2014.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/15/2022]
Abstract
The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.
Collapse
Affiliation(s)
- K Schawkat
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - S Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - S Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - A D Ducray
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - H R Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| |
Collapse
|
6
|
Borrie SC, Sartori SB, Lehmann J, Sah A, Singewald N, Bandtlow CE. Loss of Nogo receptor homolog NgR2 alters spine morphology of CA1 neurons and emotionality in adult mice. Front Behav Neurosci 2014; 8:175. [PMID: 24860456 PMCID: PMC4030173 DOI: 10.3389/fnbeh.2014.00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/25/2014] [Indexed: 01/08/2023] Open
Abstract
Molecular mechanisms which stabilize dendrites and dendritic spines are essential for regulation of neuronal plasticity in development and adulthood. The class of Nogo receptor proteins, which are critical for restricting neurite outgrowth inhibition signaling, have been shown to have roles in developmental, experience and activity induced plasticity. Here we investigated the role of the Nogo receptor homolog NgR2 in structural plasticity in a transgenic null mutant for NgR2. Using Golgi-Cox staining to analyze morphology, we show that loss of NgR2 alters spine morphology in adult CA1 pyramidal neurons of the hippocampus, significantly increasing mushroom-type spines, without altering dendritic tree complexity. Furthermore, this shift is specific to apical dendrites in distal CA1 stratum radiatum (SR). Behavioral alterations in NgR2(-/-) mice were investigated using a battery of standardized tests and showed that whilst there were no alterations in learning and memory in NgR2(-/-) mice compared to littermate controls, NgR2(-/-) displayed reduced fear expression in the contextual conditioned fear test, and exhibited reduced anxiety- and depression-related behaviors. This suggests that the loss of NgR2 results in a specific phenotype of reduced emotionality. We conclude that NgR2 has role in maintenance of mature spines and may also regulate fear and anxiety-like behaviors.
Collapse
Affiliation(s)
- Sarah C Borrie
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University Innsbruck, Austria
| | - Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Julian Lehmann
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Christine E Bandtlow
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University Innsbruck, Austria
| |
Collapse
|
7
|
Jones TA, Liput DJ, Maresh EL, Donlan N, Parikh TJ, Marlowe D, Kozlowski DA. Use-dependent dendritic regrowth is limited after unilateral controlled cortical impact to the forelimb sensorimotor cortex. J Neurotrauma 2012; 29:1455-68. [PMID: 22352953 PMCID: PMC5749646 DOI: 10.1089/neu.2011.2207] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.
Collapse
Affiliation(s)
- Theresa A. Jones
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas
| | - Daniel J. Liput
- DePaul University, Department of Biological Sciences, Chicago, Illinois
| | - Erin L. Maresh
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas
| | - Nicole Donlan
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas
| | - Toral J. Parikh
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas
| | - Dana Marlowe
- DePaul University, Department of Biological Sciences, Chicago, Illinois
| | | |
Collapse
|
8
|
Zhou ZD, Sathiyamoorthy S, Tan EK. LINGO-1 and Neurodegeneration: Pathophysiologic Clues for Essential Tremor. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23439882 PMCID: PMC3569903 DOI: 10.7916/d8pz57jv] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023]
Abstract
Essential tremor (ET), one of the most common adult-onset movement disorders, has been associated with cerebellar Purkinje cell degeneration and formation of brainstem Lewy bodies. Recent findings suggest that genetic variants of the leucine-rich repeat and Ig domain containing 1 (LINGO-1) gene could be risk factors for ET. The LINGO-1 protein contains both leucine-rich repeat (LRR) and immunoglobulin (Ig)-like domains in its extracellular region, as well as a transmembrane domain and a short cytoplasmic tail. LINGO-1 can form a ternary complex with Nogo-66 receptor (NgR1) and p75. Binding of LINGO-1 with NgR1 can activate the NgR1 signaling pathway, leading to inhibition of oligodendrocyte differentiation and myelination in the central nervous system. LINGO-1 has also been found to bind with epidermal growth factor receptor (EGFR) and induce downregulation of the activity of EGFR-PI3K-Akt signaling, which might decrease Purkinje cell survival. Therefore, it is possible that genetic variants of LINGO-1, either alone or in combination with other genetic or environmental factors, act to increase LINGO-1 expression levels in Purkinje cells and confer a risk to Purkinje cell survival in the cerebellum.Here, we provide a concise summary of the link between LINGO-1 and neurodegeneration and discuss various hypotheses as to how this could be potentially relevant to ET pathogenesis.
Collapse
|
9
|
The Nogo-66 receptor family in the intact and diseased CNS. Cell Tissue Res 2012; 349:105-17. [PMID: 22311207 DOI: 10.1007/s00441-012-1332-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of β-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.
Collapse
|
10
|
Gil V, Bichler Z, Lee JK, Seira O, Llorens F, Bribian A, Morales R, Claverol-Tinture E, Soriano E, Sumoy L, Zheng B, Del Río JA. Developmental expression of the oligodendrocyte myelin glycoprotein in the mouse telencephalon. ACTA ACUST UNITED AC 2009; 20:1769-79. [PMID: 19892785 DOI: 10.1093/cercor/bhp246] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Because Nogo-A is mostly associated with the endoplasmic reticulum and myelin associated glycoprotein appears late during development, the putative participation of OMgp should be considered. Here, we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel field. At the cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered, and numerous axons ectopically invaded layers II-III. Our data support the idea that early expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona E-08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The Expression Patterns of Nogo-A and NgR in the Neonatal Rat Visual Nervous System. Neurochem Res 2009; 34:1204-8. [DOI: 10.1007/s11064-008-9896-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
12
|
Willi R, Aloy EM, Yee BK, Feldon J, Schwab ME. Behavioral characterization of mice lacking the neurite outgrowth inhibitor Nogo-A. GENES BRAIN AND BEHAVIOR 2008; 8:181-92. [PMID: 19077178 DOI: 10.1111/j.1601-183x.2008.00460.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The membrane protein Nogo-A inhibits neurite outgrowth and regeneration in the injured central nervous system, primarily because of its expression in oligodendrocytes. Hence, deletion of Nogo-A enhances regeneration following spinal cord injury. Yet, the effects of Nogo-A deletion on general behavior and cognition have not been explored. The possibility of potential novel functions of Nogo-A beyond growth inhibition is strongly suggested by the presence of subpopulations of neurons also expressing Nogo-A - not only during development but also in adulthood. We evaluated here Nogo-A(-/-) mice in a series of general basic behavioral assays as well as functional analyses related to brain regions with notable expression levels of Nogo-A. The SHIRPA protocol did not show any major basic behavioral changes in Nogo-A(-/-) mice. Anxiety-related behavior, pain sensitivity, startle reactivity, spatial learning, and associative learning also appeared indistinguishable between Nogo-A(-/-) and control Nogo-A(+/+) mice. However, motor co-ordination and balance were enhanced in Nogo-A(-/-) mice. Spontaneous locomotor activity was also elevated in Nogo-A(-/-) mice, but this was specifically observed in the dark (active) phase of the circadian cycle. Enhanced locomotor reaction to systemic amphetamine in Nogo-A(-/-) mice further pointed to an altered dopaminergic tone in these mice. The present study is the first behavioral characterization of mice lacking Nogo-A and provides significant insights into the potential behavioral relevance of Nogo-A in the modulation of dopaminergic and motor functions.
Collapse
Affiliation(s)
- R Willi
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Richard M, Sacquet J, Jourdan F, Pellier-Monnin V. Spatio-temporal expression pattern of receptors for myelin-associated inhibitors in the developing rat olfactory system. Brain Res 2008; 1252:52-65. [PMID: 19063867 DOI: 10.1016/j.brainres.2008.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 12/11/2022]
Abstract
The myelin-associated inhibitory proteins (Nogo-A, MAG and OMgp) that prevent axon regeneration in adult CNS, mediate their effects via a receptor referred as NgR1. Beside their inhibitory role in the adult CNS, Nogo-A and NgR1 might also be functionally involved in the developing nervous system. At the present time, no detailed study is available regarding either the onset of NgR1 expression during development or its spatio-temporal pattern of expression relative to the presence of Nogo-A. Two homologs of NgR1, NgR2 and NgR3, have been recently identified, but their function in the nervous system is still unknown in adult as well as during development. We have examined the spatio-temporal expression pattern of both NgR1, NgR2 and NgR3 mRNAs and corresponding proteins in the developing rat olfactory system using in situ hybridization and immunohistochemistry. From E15-E16 onwards, NgR1 mRNA was expressed by differentiating neurons in both the olfactory epithelium and the olfactory bulb. At all developmental stages, including adult animals, NgR1 protein was preferentially targeted to olfactory axons emerging from the olfactory epithelium. Using double-immunostainings in the postnatal olfactory mucosa, we confirm the neuronal localization of NgR1 and its preferential distribution along the olfactory axons. The NgR2 and NgR3 transcripts and their proteins display similar expression profiles in the olfactory system. Together, our data suggest that, in non-pathological conditions, NgR1 and its homologs may play a role in axon outgrowth in the rat olfactory system and may be relevant for the confinement of neural projections within the developing olfactory bulb.
Collapse
Affiliation(s)
- Marion Richard
- Laboratoire Neurosciences Sensorielles, Comportement, Cognition, CNRS-UMR 5020, Université de Lyon, Lyon 1, F-69366, France.
| | | | | | | |
Collapse
|
14
|
Reduction of oligodendrocyte myelin glycoprotein expression following facial nerve transection. J Chem Neuroanat 2008; 36:209-15. [PMID: 18809489 DOI: 10.1016/j.jchemneu.2008.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 11/23/2022]
Abstract
Oligodendrocyte myelin glycoprotein (OMgp) has been thought to be expressed in the oligodendrocytes and inhibit the regeneration of the nerves by binding to the Nogo receptor expressed in neurons in the central nervous system (CNS). However, OMgp is expressed in the CNS in the neurons as well as oligodendrocytes. In order to help understanding the physiological role of neuronal OMgp, we examined the change of OMgp expression in the facial nucleus after the facial nerve transection. Real-time RT-PCR and Western blot analysis showed a down-regulation of OMgp expression in the facial nucleus 5-7 (mRNA) or 5-14 (protein) days after transection. Thereafter, expression of OMgp returned to the control level at 28 days after axotomy. Subsequent analysis using in situ hybridization histochemistry and immunohistochemistry established that the decrease of OMgp expression was attributable to the expression in facial motoneurons, but not in oligodendrocytes. These findings suggest a possibility that the change of neuronal OMgp expression might be involved in reconnection of neural circuit between axotomized facial neuron and upper motor neuron after transection.
Collapse
|