1
|
Maxeiner S, Benseler F, Brose N, Krasteva-Christ G. Of Humans and Gerbils— Independent Diversification of Neuroligin-4 Into X- and Y-Specific Genes in Primates and Rodents. Front Mol Neurosci 2022; 15:838262. [PMID: 35431802 PMCID: PMC9005811 DOI: 10.3389/fnmol.2022.838262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The neural cell adhesion protein neuroligin-4 has puzzled neuroscientists and geneticist alike for almost two decades. Its clinical association with autism spectrum disorders (ASD) is well established, however, its diversification into sex chromosome-specific copies, NLGN4X and NLGN4Y, remains uncharted territory. Just recently, the presence of substantial neuroligin-4 sequence differences between humans and laboratory mice, in which Nlgn4 is a pseudoautosomal gene, could be explained as a consequence of dramatic changes affecting the pseudoautosomal region on both sex chromosomes in a subset of rodents, the clade eumuroida. In this study, we describe the presence of sex chromosome-specific copies of neuroligin-4 genes in the Mongolian gerbil (Meriones unguiculatus) marking the first encounter of its kind in rodents. Gerbils are members of the family Muridae and are closely related to mice and rats. Our results have been incorporated into an extended evolutionary analysis covering primates, rodents, lagomorphs, treeshrews and culogos comprising together the mammalian superorder euarchontoglires. We gathered evidence that substantial changes in neuroligin-4 genes have also occurred outside eumuroida in other rodent species as well as in lagomorphs. These changes feature, e.g., a general reduction of its gene size, an increase in its average GC-content as well as in the third position (GC3) of synonymous codons, and the accumulation of repetitive sequences in line with previous observations. We further show conclusively that the diversification of neuroligin-4 in sex chromosome-specific copies has happened multiple times independently during mammal evolution proving that Y-chromosomal NLGN4Y genes do not originate from a single common NLGN4Y ancestor.
Collapse
Affiliation(s)
- Stephan Maxeiner
- Anatomy and Cell Biology, Saarland University, Homburg, Germany
- *Correspondence: Stephan Maxeiner,
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | |
Collapse
|
2
|
Gage E, Agarwal D, Chenault C, Washington-Brown K, Szvetecz S, Jahan N, Wang Z, Jones MK, Zack DJ, Enke RA, Wahlin KJ. Temporal and Isoform-Specific Expression of CTBP2 Is Evolutionarily Conserved Between the Developing Chick and Human Retina. Front Mol Neurosci 2022; 14:773356. [PMID: 35095414 PMCID: PMC8793361 DOI: 10.3389/fnmol.2021.773356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Complex transcriptional gene regulation allows for multifaceted isoform production during retinogenesis, and novel isoforms transcribed from a single locus can have unlimited potential to code for diverse proteins with different functions. In this study, we explored the CTBP2/RIBEYE gene locus and its unique repertoire of transcripts that are conserved among vertebrates. We studied the transcriptional coregulator (CTBP2) and ribbon synapse-specific structural protein (RIBEYE) in the chicken retina by performing comprehensive histochemical and sequencing analyses to pinpoint cell and developmental stage-specific expression of CTBP2/RIBEYE in the developing chicken retina. We demonstrated that CTBP2 is widely expressed in retinal progenitors beginning in early retinogenesis but becomes limited to GABAergic amacrine cells in the mature retina. Inversely, RIBEYE is initially epigenetically silenced in progenitors and later expressed in photoreceptor and bipolar cells where they localize to ribbon synapses. Finally, we compared CTBP2/RIBEYE regulation in the developing human retina using a pluripotent stem cell derived retinal organoid culture system. These analyses demonstrate that similar regulation of the CTBP2/RIBEYE locus during chick and human retinal development is regulated by different members of the K50 homeodomain transcription factor family.
Collapse
Affiliation(s)
- Elizabeth Gage
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Devansh Agarwal
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| | - Calvin Chenault
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - Sarah Szvetecz
- Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA, United States
| | - Nusrat Jahan
- Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA, United States
- The Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| | - Zixiao Wang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Melissa K. Jones
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| | - Donald J. Zack
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ray A. Enke
- Department of Biology, James Madison University, Harrisonburg, VA, United States
- The Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| | - Karl J. Wahlin
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Tangeman JA, Luz-Madrigal A, Sreeskandarajan S, Grajales-Esquivel E, Liu L, Liang C, Tsonis PA, Del Rio-Tsonis K. Transcriptome Profiling of Embryonic Retinal Pigment Epithelium Reprogramming. Genes (Basel) 2021; 12:genes12060840. [PMID: 34072522 PMCID: PMC8226911 DOI: 10.3390/genes12060840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022] Open
Abstract
The plasticity of human retinal pigment epithelium (RPE) has been observed during proliferative vitreoretinopathy, a defective repair process during which injured RPE gives rise to fibrosis. In contrast, following injury, the RPE of the embryonic chicken can be reprogrammed to regenerate neural retina in a fibroblast growth factor 2 (FGF2)-dependent manner. To better explore the mechanisms underlying embryonic RPE reprogramming, we used laser capture microdissection to isolate RNA from (1) intact RPE, (2) transiently reprogrammed RPE (t-rRPE) 6 h post-retinectomy, and (3) reprogrammed RPE (rRPE) 6 h post-retinectomy with FGF2 treatment. Using RNA-seq, we observed the acute repression of genes related to cell cycle progression in the injured t-rRPE, as well as up-regulation of genes associated with injury. In contrast, the rRPE was strongly enriched for mitogen-activated protein kinase (MAPK)-responsive genes and retina development factors, confirming that FGF2 and the downstream MAPK cascade are the main drivers of embryonic RPE reprogramming. Clustering and pathway enrichment analysis was used to create an integrated network of the core processes associated with RPE reprogramming, including key terms pertaining to injury response, migration, actin dynamics, and cell cycle progression. Finally, we employed gene set enrichment analysis to suggest a previously uncovered role for epithelial-mesenchymal transition (EMT) machinery in the initiation of embryonic chick RPE reprogramming. The EMT program is accompanied by extensive, coordinated regulation of extracellular matrix (ECM) associated factors, and these observations together suggest an early role for ECM and EMT-like dynamics during reprogramming. Our study provides for the first time an in-depth transcriptomic analysis of embryonic RPE reprogramming and will prove useful in guiding future efforts to understand proliferative disorders of the RPE and to promote retinal regeneration.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sutharzan Sreeskandarajan
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA;
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Correspondence: ; Tel.: +513-529-3128; Fax: +513-529-6900
| |
Collapse
|
4
|
Seifert M, Baden T, Osorio D. The retinal basis of vision in chicken. Semin Cell Dev Biol 2020; 106:106-115. [PMID: 32295724 DOI: 10.1016/j.semcdb.2020.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
The Avian retina is far less known than that of mammals such as mouse and macaque, and detailed study is overdue. The chicken (Gallus gallus) has potential as a model, in part because research can build on developmental studies of the eye and nervous system. One can expect differences between bird and mammal retinas simply because whereas most mammals have three types of visual photoreceptor birds normally have six. Spectral pathways and colour vision are of particular interest, because filtering by oil droplets narrows cone spectral sensitivities and birds are probably tetrachromatic. The number of receptor inputs is reflected in the retinal circuitry. The chicken probably has four types of horizontal cell, there are at least 11 types of bipolar cell, often with bi- or tri-stratified axon terminals, and there is a high density of ganglion cells, which make complex connections in the inner plexiform layer. In addition, there is likely to be retinal specialisation, for example chicken photoreceptors and ganglion cells have separate peaks of cell density in the central and dorsal retina, which probably serve different types of behaviour.
Collapse
Affiliation(s)
- M Seifert
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK.
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK; Institute for Ophthalmic Research, University of Tuebingen, Germany
| | - D Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK
| |
Collapse
|
5
|
Oku S, Feng H, Connor S, Toledo A, Zhang P, Zhang Y, Thoumine O, Zhang C, Craig AM. Alternative splicing at neuroligin site A regulates glycan interaction and synaptogenic activity. eLife 2020; 9:58668. [PMID: 32915137 PMCID: PMC7486126 DOI: 10.7554/elife.58668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/31/2020] [Indexed: 01/18/2023] Open
Abstract
Post-transcriptional mechanisms regulating cell surface synaptic organizing complexes that control the properties of connections in brain circuits are poorly understood. Alternative splicing regulates the prototypical synaptic organizing complex, neuroligin-neurexin. In contrast to the well-studied neuroligin splice site B, little is known about splice site A. We discovered that inclusion of the positively charged A1 insert in mouse neuroligin-1 increases its binding to heparan sulphate, a modification on neurexin. The A1 insert increases neurexin recruitment, presynaptic differentiation, and synaptic transmission mediated by neuroligin-1. We propose that the A1 insert could be a target for alleviating the consequences of deleterious NLGN1/3 mutations, supported by assays with the autism-linked neuroligin-1-P89L mutant. An enrichment of neuroligin-1 A1 in GABAergic neuron types suggests a role in synchrony of cortical circuits. Altogether, these data reveal an unusual mode by which neuroligin splicing controls synapse development through protein-glycan interaction and identify it as a potential therapeutic target.
Collapse
Affiliation(s)
- Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Huijuan Feng
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
| | - Steven Connor
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Andrea Toledo
- Interdisciplinary Institute for Neuroscience UMR 5297, CNRS and University of Bordeaux, Bordeaux, France
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Yue Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience UMR 5297, CNRS and University of Bordeaux, Bordeaux, France
| | - Chaolin Zhang
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Photoreceptor Outer Segment-like Structures in Long-Term 3D Retinas from Human Pluripotent Stem Cells. Sci Rep 2017; 7:766. [PMID: 28396597 PMCID: PMC5429674 DOI: 10.1038/s41598-017-00774-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
The retinal degenerative diseases, which together constitute a leading cause of hereditary blindness worldwide, are largely untreatable. Development of reliable methods to culture complex retinal tissues from human pluripotent stem cells (hPSCs) could offer a means to study human retinal development, provide a platform to investigate the mechanisms of retinal degeneration and screen for neuroprotective compounds, and provide the basis for cell-based therapeutic strategies. In this study, we describe an in vitro method by which hPSCs can be differentiated into 3D retinas with at least some important features reminiscent of a mature retina, including exuberant outgrowth of outer segment-like structures and synaptic ribbons, photoreceptor neurotransmitter expression, and membrane conductances and synaptic vesicle release properties consistent with possible photoreceptor synaptic function. The advanced outer segment-like structures reported here support the notion that 3D retina cups could serve as a model for studying mature photoreceptor development and allow for more robust modeling of retinal degenerative disease in vitro.
Collapse
|
7
|
Shaqura M, Li X, Al-Khrasani M, Shakibaei M, Tafelski S, Fürst S, Beyer A, Kawata M, Schäfer M, Mousa SA. Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects. Neuropharmacology 2016; 111:1-13. [DOI: 10.1016/j.neuropharm.2016.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/14/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022]
|
8
|
Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. J Comp Neurol 2014; 522:900-20. [PMID: 23982969 DOI: 10.1002/cne.23452] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Abstract
Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520-8024
| | | | | | | |
Collapse
|
9
|
Zhang L, Wahlin K, Li Y, Masuda T, Yang Z, Zack DJ, Esumi N. RIT2, a neuron-specific small guanosine triphosphatase, is expressed in retinal neuronal cells and its promoter is modulated by the POU4 transcription factors. Mol Vis 2013; 19:1371-86. [PMID: 23805044 PMCID: PMC3692409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 06/14/2013] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Ras-like without CAAX 2 (RIT2), a member of the Ras superfamily of small guanosine triphosphatases, is involved in regulating neuronal function. RIT2 is a unique member of the Ras family in that RIT2 is preferentially expressed in various neurons, including retinal neurons. The mechanisms that regulate RIT2 expression in neurons were studied. METHODS Reverse transcription-quantitative PCR (RT-qPCR), immunohistochemistry, western blotting, bioinformatic prediction, electrophoretic mobility shift assay (EMSA), and cell transfection methods were used. RESULTS With immunohistochemistry of the mouse retina, RIT2 protein was detected in the ganglion cell layer (GCL), inner plexiform layer, inner nuclear layer, and outer plexiform layer, with the strongest staining in the GCL and the inner plexiform layer. RT-qPCR combined with laser capture microdissection detected Rit2 messenger RNA in the GCL and the inner nuclear layer. Western blot analysis showed a large increase in the RIT2 protein in the retina during maturation from newborn to adult. Transient transfection identified the 1.3 kb upstream region of human RIT2 as capable of driving expression in neuronal cell lines. Based on the known expression pattern and biological activity, we hypothesized that POU4 family factors might modulate RIT2 expression in retinal ganglion cells (RGCs). Bioinformatic analyses predicted six POU4 factor-binding sites within the 1.3 kb human RIT2 promoter region. EMSA analyses showed binding of POU4 proteins to three of the six predicted sites. Cotransfection with expression vectors demonstrated that POU4 proteins can indeed modulate the human RIT2 promoter, and that ISL1, a LIM homeodomain factor, can further modulate the activity of the POU4 factors. CONCLUSIONS These studies confirm the expression of RIT2 in retinal neuronal cells, including RGCs, begin to reveal the mechanisms responsible for neuronal expression of RIT2, and suggest a role for the POU4 family factors in modulating RIT2 expression in RGCs.
Collapse
Affiliation(s)
- Ling Zhang
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Karl Wahlin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yuanyuan Li
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD,Montefiore Medical Center, 200 Corporate Boulevard, Yonkers, NY 10701
| | - Tomohiro Masuda
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zhiyong Yang
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Donald J. Zack
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD,Departments of Neuroscience, Molecular Biology and Genetics, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD,Institut de la Vision, Université Pierre et Marie Curie, 75012 Paris, France
| | - Noriko Esumi
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, Budenz DL, Caprioli J, Crenshaw A, Crooks K, Delbono E, Doheny KF, Friedman DS, Gaasterland D, Gaasterland T, Laurie C, Lee RK, Lichter PR, Loomis S, Liu Y, Medeiros FA, McCarty C, Mirel D, Moroi SE, Musch DC, Realini A, Rozsa FW, Schuman JS, Scott K, Singh K, Stein JD, Trager EH, Vanveldhuisen P, Vollrath D, Wollstein G, Yoneyama S, Zhang K, Weinreb RN, Ernst J, Kellis M, Masuda T, Zack D, Richards JE, Pericak-Vance M, Pasquale LR, Haines JL. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet 2012; 8:e1002654. [PMID: 22570617 PMCID: PMC3343074 DOI: 10.1371/journal.pgen.1002654] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/01/2012] [Indexed: 01/07/2023] Open
Abstract
Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63-0.75], p = 1.86×10⁻¹⁸), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21-1.43], p = 3.87×10⁻¹¹). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50-0.67], p = 1.17×10⁻¹²) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53-0.72], p = 8.88×10⁻¹⁰). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41-0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54-1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma.
Collapse
Affiliation(s)
- Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hackler L, Masuda T, Oliver VF, Merbs SL, Zack DJ. Use of laser capture microdissection for analysis of retinal mRNA/miRNA expression and DNA methylation. Methods Mol Biol 2012; 884:289-304. [PMID: 22688715 DOI: 10.1007/978-1-61779-848-1_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Laser capture microdissection (LCM) is a useful method to isolate specific cells or cell layers of interest from heterogeneous tissues, such as the retina. The collected cells can be used for DNA, RNA, or protein analysis. We have applied LCM technology to isolate cells from the outer nuclear, inner nuclear, and ganglion cell layers of the retina for mRNA and microRNA (miRNA) expression and epigenetic (DNA methylation) analysis. Here, we describe the methods we have employed for sample preparation, LCM-based isolation of retinal layers, RNA/DNA extraction, RNA quality check, microRNA analysis by quantitative PCR, and DNA methylation analysis by bisulfite sequencing.
Collapse
|