1
|
Zhang B, Shi X, Liu X, Liu Y, Li X, Wang Q, Huang D, Zhao W, Cui J, Cao Y, Chai X, Wang J, Zhang Y, Wang X, Jia Q. Discovery of E0199: A novel compound targeting both peripheral Na V and K V7 channels to alleviate neuropathic pain. J Pharm Anal 2025; 15:101132. [PMID: 39906690 PMCID: PMC11791318 DOI: 10.1016/j.jpha.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025] Open
Abstract
This research study focuses on addressing the limitations of current neuropathic pain (NP) treatments by developing a novel dual-target modulator, E0199, targeting both NaV1.7, NaV1.8, and NaV1.9 and KV7 channels, a crucial regulator in controlling NP symptoms. The objective of the study was to synthesize a compound capable of modulating these channels to alleviate NP. Through an experimental design involving both in vitro and in vivo methods, E0199 was tested for its efficacy on ion channels and its therapeutic potential in a chronic constriction injury (CCI) mouse model. The results demonstrated that E0199 significantly inhibited NaV1.7, NaV1.8, and NaV1.9 channels with a particularly low half maximal inhibitory concentration (IC50) for NaV1.9 by promoting sodium channel inactivation, and also effectively increased KV7.2/7.3, KV7.2, and KV7.5 channels, excluding KV7.1 by promoting potassium channel activation. This dual action significantly reduced the excitability of dorsal root ganglion neurons and alleviated pain hypersensitivity in mice at low doses, indicating a potent analgesic effect without affecting heart and skeletal muscle ion channels critically. The safety of E0199 was supported by neurobehavioral evaluations. Conclusively, E0199 represents a ground-breaking approach in NP treatment, showcasing the potential of dual-target small-molecule compounds in providing a more effective and safe therapeutic option for NP. This study introduces a promising direction for the future development of NP therapeutics.
Collapse
Affiliation(s)
- Boxuan Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoxing Shi
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xingang Liu
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Liu
- Department of Pharmaceutical Experimental Teaching Center, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuedong Li
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qi Wang
- Shijiazhuang Xianyu Digital Biotechnology Co., Ltd., College of Software, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongyang Huang
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Weidong Zhao
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junru Cui
- The Center for New Drug Safety Evaluation and Research, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yawen Cao
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xu Chai
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiahao Wang
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yang Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiangyu Wang
- Hebei Medical University Postdoctoral Mobile Station of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
- Departments of Clinic Pharmacy, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingzhong Jia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
2
|
Higerd-Rusli GP, Tyagi S, Baker CA, Liu S, Dib-Hajj FB, Dib-Hajj SD, Waxman SG. Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity. Proc Natl Acad Sci U S A 2023; 120:e2215417120. [PMID: 36897973 PMCID: PMC10089179 DOI: 10.1073/pnas.2215417120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 03/12/2023] Open
Abstract
Inflammation causes pain by shifting the balance of ionic currents in nociceptors toward depolarization, leading to hyperexcitability. The ensemble of ion channels within the plasma membrane is regulated by processes including biogenesis, transport, and degradation. Thus, alterations in ion channel trafficking may influence excitability. Sodium channel NaV1.7 and potassium channel KV7.2 promote and oppose excitability in nociceptors, respectively. We used live-cell imaging to investigate mechanisms by which inflammatory mediators (IM) modulate the abundance of these channels at axonal surfaces through transcription, vesicular loading, axonal transport, exocytosis, and endocytosis. Inflammatory mediators induced a NaV1.7-dependent increase in activity in distal axons. Further, inflammation increased the abundance of NaV1.7, but not of KV7.2, at axonal surfaces by selectively increasing channel loading into anterograde transport vesicles and insertion at the membrane, without affecting retrograde transport. These results uncover a cell biological mechanism for inflammatory pain and suggest NaV1.7 trafficking as a potential therapeutic target.
Collapse
Affiliation(s)
- Grant P. Higerd-Rusli
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06520
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
- Cellular and Molecular Physiology Graduate Program, Yale University School of Medicine, New Haven, CT06520
| | - Sidharth Tyagi
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06520
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
- Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT06520
| | - Christopher A. Baker
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Fadia B. Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Sulayman D. Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Stephen G. Waxman
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| |
Collapse
|
3
|
Wright AB, Sukhanova KY, Elmslie KS. K V7 channels are potential regulators of the exercise pressor reflex. J Neurophysiol 2021; 126:1-10. [PMID: 34038189 DOI: 10.1152/jn.00700.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The exercise pressor reflex (EPR) originates in skeletal muscle and is activated by exercise-induced signals to increase arterial blood pressure and cardiac output. Muscle ischemia can elicit the EPR, which can be inappropriately activated in patients with peripheral vascular disease or heart failure to increase the incidence of myocardial infarction. We seek to better understand the receptor/channels that control excitability of group III and group IV muscle afferent fibers that give rise to the EPR. Bradykinin (BK) is released within contracting muscle and can evoke the EPR. However, the mechanism is incompletely understood. KV7 channels strongly regulate neuronal excitability and are inhibited by BK. We have identified KV7 currents in muscle afferent neurons by their characteristic activation/deactivation kinetics, enhancement by the KV7 activator retigabine, and block by KV7 specific inhibitor XE991. The blocking of KV7 current by different XE991 concentrations suggests that the KV7 current is generated by both KV7.2/7.3 (high affinity) and KV7.5 (low affinity) channels. The KV7 current was inhibited by 300 nM BK in neurons with diameters consistent with both group III and group IV afferents. The inhibition of KV7 by BK could be a mechanism by which this metabolic mediator generates the EPR. Furthermore, our results suggest that KV7 channel activators such as retigabine, could be used to reduce cardiac stress resulting from the exacerbated EPR in patients with cardiovascular disease.NEW & NOTEWORTHY KV7 channels control neuronal excitability. We show that these channels are expressed in muscle afferents and generate currents that are blocked by XE991 and bradykinin (BK). The XE991 block suggests that KV7 current is generated by KV7.2/3 and KV7.5 channels. The BK inhibition of KV7 channels may explain how BK activates the exercise pressor reflex (EPR). Retigabine can enhance KV7 current, which could help control the inappropriately activated EPR in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew B Wright
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Khrystyna Yu Sukhanova
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
4
|
Dirkx N, Miceli F, Taglialatela M, Weckhuysen S. The Role of Kv7.2 in Neurodevelopment: Insights and Gaps in Our Understanding. Front Physiol 2020; 11:570588. [PMID: 33192566 PMCID: PMC7657400 DOI: 10.3389/fphys.2020.570588] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Kv7.2 subunits encoded by the KCNQ2 gene constitute a critical molecular component of the M-current, a subthreshold voltage-gated potassium current controlling neuronal excitability by dampening repetitive action potential firing. Pathogenic loss-of-function variants in KCNQ2 have been linked to epilepsy since 1998, and there is ample functional evidence showing that dysfunction of the channel indeed results in neuronal hyperexcitability. The recent description of individuals with severe developmental delay with or without seizures due to pathogenic variants in KCNQ2 (KCNQ2-encephalopathy) reveals that Kv7.2 channels also have an important role in neurodevelopment. Kv7.2 channels are expressed already very early in the developing brain when key developmental processes such as proliferation, differentiation, and synaptogenesis play a crucial role in brain morphogenesis and maturation. In this review, we will discuss the available evidence for a role of Kv7.2 channels in these neurodevelopmental processes, focusing in particular on insights derived from KCNQ2-related human phenotypes, from the spatio-temporal expression of Kv7.2 and other Kv7 family member, and from cellular and rodent models, highlighting critical gaps and research strategies to be implemented in the future. Lastly, we propose a model which divides the M-current activity in three different developmental stages, correlating with the cell characteristics during these particular periods in neuronal development, and how this can be linked with KCNQ2-related disorders. Understanding these mechanisms can create opportunities for new targeted therapies for KCNQ2-encephalopathy.
Collapse
Affiliation(s)
- Nina Dirkx
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Vlaams Instituut voor Biotechnologie, Antwerp, Belgium
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Vlaams Instituut voor Biotechnologie, Antwerp, Belgium.,Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
5
|
Changes in expression of Kv7.5 and Kv7.2 channels in dorsal root ganglion neurons in the streptozotocin rat model of painful diabetic neuropathy. Neurosci Lett 2020; 736:135277. [PMID: 32739272 DOI: 10.1016/j.neulet.2020.135277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
Abstract
Diabetic peripheral neuropathic pain (DPNP), the most debilitating complication of diabetes mellitus, is resistant to current therapy. The pathogenesis of DPNP is still elusive, but several mechanisms have been proposed including abnormal hyperexcitability of dorsal root ganglion (DRG) neurons. The underlying molecular mechanisms of such aberrant hyperexcitability are incompletely understood. Using the streptozotocin (STZ) rat model of DPNP, we have recently provided evidence implicating neuronal Kv7 channels that normally exert a powerful stabilizing influence on neuronal excitability, in the abnormal hyperexcitability of DRG neurons and in pain hypersensitivity associated with DPNP. In the present immunohistochemical study, we sought to determine whether Kv7.2 and/or Kv7.5 channel expression is altered in DRG neurons in STZ rats. We found 35 days post-STZ: (1) a significant decrease in Kv7.5-immunoreactivity in small (<30 μm) DRG neurons (both IB4 positive and IB4 negative) and medium-sized (30-40 μm) neurons, and (2) a significant increase in Kv7.2-immunoreactivity in small (<30 μm) neurons, and a non-significant increase in medium/large neurons. The decrease in Kv7.5 channel expression in small and medium-sized DRG neurons in STZ rats is likely to contribute to the mechanisms of hyperexcitability of these neurons and thereby to the resulting pain hypersensitivity associated with DPNP. The upregulation of Kv7.2 subunit in small DRG neurons may be an activity dependent compensatory mechanism to limit STZ-induced hyperexcitability of DRG neurons and the associated pain hypersensitivity. The findings support the notion that Kv7 channels may represent a novel target for DPNP treatment.
Collapse
|
6
|
Vicente-Baz J, Rivera-Arconada I. Spinal Actions of the NSAID Diclofenac on Nociceptive Transmission in Comparison to the K v7 Channel Opener Flupirtine. Neuroscience 2020; 440:186-195. [PMID: 32505744 DOI: 10.1016/j.neuroscience.2020.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
NSAIDs are the drugs most commonly used to alleviate pain. Despite being a heterogeneous group of compounds, all of them share a mechanism of action based on blockade of COXs enzymes, which confers them anti-inflammatory and analgesic properties. Diclofenac is a NSAID with preferred activity on COX-2 isozymes, but additionally, other targets may be implicated in its analgesic activity. Among them, diclofenac may facilitate the activity of Kv7 channels, that have been previously recognized as potential therapeutic targets in analgesia. In this study, the antinociceptive actions of diclofenac acting at the spinal level and the role of Kv7 channels in its effects were evaluated. Electrophysiological recordings of spinal reflexes and responses of dorsal horn neurons were obtained using in vitro spinal cord preparations from neonatal mice. Diclofenac, applied at clinically relevant concentrations to the entire preparation, depressed wind-up of spinal reflexes with a pattern similar to that of flupirtine, an analgesic with activity as Kv7 channel opener. Depressant actions of both compounds were strongly reduced after Kv7 channel blockade with XE-991, indicating the implication of these channels in the observed effects. Flupirtine, but not diclofenac, also reduced action potential firing of dorsal horn neurons in response to electrical activation of nociceptive afferents, suggesting differences in the actions of both compounds on Kv7 channel configurations present in sensory areas of the cord. Results demonstrate previously unknown central actions of diclofenac on Kv7 channels located in spinal circuits, expanding the knowledge about its pharmacological actions.
Collapse
Affiliation(s)
- Jorge Vicente-Baz
- Department of Systems Biology (Physiology), Universidad de Alcala, Alcala de Henares, Madrid, Spain
| | - Ivan Rivera-Arconada
- Department of Systems Biology (Physiology), Universidad de Alcala, Alcala de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Liu Y, Xu X, Gao J, Naffaa MM, Liang H, Shi J, Wang HZ, Yang ND, Hou P, Zhao W, White KM, Kong W, Dou A, Cui A, Zhang G, Cohen IS, Zou X, Cui J. A PIP 2 substitute mediates voltage sensor-pore coupling in KCNQ activation. Commun Biol 2020; 3:385. [PMID: 32678288 PMCID: PMC7367283 DOI: 10.1038/s42003-020-1104-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
KCNQ family K+ channels (KCNQ1-5) in the heart, nerve, epithelium and ear require phosphatidylinositol 4,5-bisphosphate (PIP2) for voltage dependent activation. While membrane lipids are known to regulate voltage sensor domain (VSD) activation and pore opening in voltage dependent gating, PIP2 was found to interact with KCNQ1 and mediate VSD-pore coupling. Here, we show that a compound CP1, identified in silico based on the structures of both KCNQ1 and PIP2, can substitute for PIP2 to mediate VSD-pore coupling. Both PIP2 and CP1 interact with residues amongst a cluster of amino acids critical for VSD-pore coupling. CP1 alters KCNQ channel function due to different interactions with KCNQ compared with PIP2. We also found that CP1 returned drug-induced action potential prolongation in ventricular myocytes to normal durations. These results reveal the structural basis of PIP2 regulation of KCNQ channels and indicate a potential approach for the development of anti-arrhythmic therapy.
Collapse
Affiliation(s)
- Yongfeng Liu
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Xianjin Xu
- grid.134936.a0000 0001 2162 3504Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211 USA
| | - Junyuan Gao
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, and Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Moawiah M. Naffaa
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Hongwu Liang
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Jingyi Shi
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Hong Zhan Wang
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, and Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Nien-Du Yang
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Panpan Hou
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Wenshan Zhao
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Kelli McFarland White
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Wenjuan Kong
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Alex Dou
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Amy Cui
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Guohui Zhang
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Ira S. Cohen
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, and Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Xiaoqin Zou
- grid.134936.a0000 0001 2162 3504Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211 USA
| | - Jianmin Cui
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
8
|
A Role for The P2Y1 Receptor in Nonsynaptic Cross-depolarization in the Rat Dorsal Root Ganglia. Neuroscience 2019; 423:98-108. [PMID: 31689490 DOI: 10.1016/j.neuroscience.2019.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Non-synaptic transmission is pervasive throughout the nervous system. It appears especially prevalent in peripheral ganglia, where non-synaptic interactions between neighboring cell bodies have been described in both physiological and pathological conditions, a phenomenon referred to as cross-depolarization (CD) and thought to play a role in sensory processing and chronic pain. CD has been proposed to be mediated by a chemical agent, but its identity has remained elusive. Here, we report that in the rat dorsal root ganglion (DRG), the P2Y1 purinergic receptor (P2RY1) plays an important role in regulating CD. The effect of P2RY1 is cell-type specific: pharmacological blockade of P2RY1 inhibited CD in A-type neurons while enhancing it in C-type neurons. In the nodose ganglion of the vagus, CD requires extracellular calcium in a large percentage of cells. In contrast, we show that in the DRG extracellular calcium appears to play no major role, pointing to a mechanistic difference between the two peripheral ganglia. Furthermore, we show that DRG glial cells also play a cell-type specific role in CD regulation. Fluorocitrate-induced glial inactivation had no effect on A-cells but enhanced CD in C-cells. These findings shed light on the mechanism of CD in the DRG and pave the way for further analysis of non-synaptic neuronal communication in sensory ganglia.
Collapse
|
9
|
Affiliation(s)
- Ivan Rivera-Arconada
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jorge Vicente-Baz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
10
|
Du X, Gao H, Jaffe D, Zhang H, Gamper N. M-type K + channels in peripheral nociceptive pathways. Br J Pharmacol 2018; 175:2158-2172. [PMID: 28800673 PMCID: PMC5980636 DOI: 10.1111/bph.13978] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Pathological pain is a hyperexcitability disorder. Since the excitability of a neuron is set and controlled by a complement of ion channels it expresses, in order to understand and treat pain, we need to develop a mechanistic insight into the key ion channels controlling excitability within the mammalian pain pathways and how these ion channels are regulated and modulated in various physiological and pathophysiological settings. In this review, we will discuss the emerging data on the expression in pain pathways, functional role and modulation of a family of voltage-gated K+ channels called 'M channels' (KCNQ, Kv 7). M channels are increasingly recognized as important players in controlling pain signalling, especially within the peripheral somatosensory system. We will also discuss the therapeutic potential of M channels as analgesic drug targets. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc/.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
| | - Haixia Gao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - David Jaffe
- Department of Biology, UTSA Neurosciences InstituteUniversity of Texas at San AntonioSan AntonioTXUSA
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
| | - Nikita Gamper
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
11
|
Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci 2017; 190:68-77. [PMID: 28964813 DOI: 10.1016/j.lfs.2017.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.
Collapse
Affiliation(s)
- Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
12
|
MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain. Nat Commun 2017; 8:16079. [PMID: 28677679 PMCID: PMC5504285 DOI: 10.1038/ncomms16079] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia. Dysregulation of voltage gated potassium channels is a feature of neuropathic pain. Here in a rat model the authors identify the microRNA cluster miR-17-92 as a regulator of voltage gated potassium channels in the dorsal root ganglion neurons.
Collapse
|
13
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|
14
|
Di Cesare Mannelli L, Lucarini E, Micheli L, Mosca I, Ambrosino P, Soldovieri MV, Martelli A, Testai L, Taglialatela M, Calderone V, Ghelardini C. Effects of natural and synthetic isothiocyanate-based H 2S-releasers against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. Neuropharmacology 2017; 121:49-59. [PMID: 28431970 DOI: 10.1016/j.neuropharm.2017.04.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 01/02/2023]
Abstract
Hydrogen sulfide (H2S) is a crucial signaling molecule involved in several physiological and pathological processes. Nonetheless, the role of this gasotransmitter in the pathogenesis and treatment of neuropathic pain is controversial. The aim of the present study was to investigate the pain relieving profile of a series of slow releasing H2S donors (the natural allyl-isothiocyanate and the synthetics phenyl- and carboxyphenyl-isothiocyanate) in animal models of neuropathic pain induced by paclitaxel or oxaliplatin, anticancer drugs characterized by a dose-limiting neurotoxicity. The potential contribution of Kv7 potassium channels modulation was also studied. Mice were treated with paclitaxel (2.0 mg kg-1) i.p. on days 1, 3, 5 and 7; oxaliplatin (2.4 mg kg-1) was administered i.p. on days 1-2, 5-9, 12-14. Behavioral tests were performed on day 15. In both models, single subcutaneous administrations of H2S donors (1.33, 4.43, 13.31 μmol kg-1) reduced the hypersensitivity to cold non-noxious stimuli (allodynia-related measurement). The prototypical H2S donor NaHS was also effective. Activity was maintained after i.c.v. administrations. On the contrary, the S-lacking molecule allyl-isocyanate did not increase pain threshold; the H2S-binding molecule hemoglobin abolished the pain-relieving effects of isothiocyanates and NaHS. The anti-neuropathic properties of H2S donors were reverted by the Kv7 potassium channel blocker XE991. Currents carried by Kv7.2 homomers and Kv7.2/Kv7.3 heteromers expressed in CHO cells were potentiated by H2S donors. Sistemically- or centrally-administered isothiocyanates reduced chemotherapy-induced neuropathic pain by releasing H2S. Activation of Kv7 channels largely mediate the anti-neuropathic effect.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy.
| | - Elena Lucarini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Laura Micheli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Ilaria Mosca
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Paolo Ambrosino
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Maria Virginia Soldovieri
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Alma Martelli
- Dept. of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Lara Testai
- Dept. of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Maurizio Taglialatela
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy; Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Via Pansini 5, Naples, Italy
| | | | - Carla Ghelardini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| |
Collapse
|
15
|
Wu Z, Li L, Xie F, Du J, Zuo Y, Frost JA, Carlton SM, Walters ET, Yang Q. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury. J Neurotrauma 2017; 34:1260-1270. [PMID: 28073317 DOI: 10.1089/neu.2016.4789] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.
Collapse
Affiliation(s)
- Zizhen Wu
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Lin Li
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Fuhua Xie
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas.,3 Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong, China
| | - Junhui Du
- 2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas
| | - Yan Zuo
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Jeffrey A Frost
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Susan M Carlton
- 2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas
| | - Edgar T Walters
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Qing Yang
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| |
Collapse
|
16
|
Effects of novel subtype selective M-current activators on spinal reflexes in vitro: Comparison with retigabine. Neuropharmacology 2016; 109:131-138. [DOI: 10.1016/j.neuropharm.2016.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 01/13/2023]
|
17
|
Lehnert S, Hartmann S, Hessler S, Adelsberger H, Huth T, Alzheimer C. Ion channel regulation by β-secretase BACE1 - enzymatic and non-enzymatic effects beyond Alzheimer's disease. Channels (Austin) 2016; 10:365-378. [PMID: 27253079 DOI: 10.1080/19336950.2016.1196307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
β-site APP-cleaving enzyme 1 (BACE1) has become infamous for its pivotal role in the pathogenesis of Alzheimer's disease (AD). Consequently, BACE1 represents a prime target in drug development. Despite its detrimental involvement in AD, it should be quite obvious that BACE1 is not primarily present in the brain to drive mental decline. In fact, additional functions have been identified. In this review, we focus on the regulation of ion channels, specifically voltage-gated sodium and KCNQ potassium channels, by BACE1. These studies provide evidence for a highly unexpected feature in the functional repertoire of BACE1. Although capable of cleaving accessory channel subunits, BACE1 exerts many of its physiologically significant effects through direct, non-enzymatic interactions with main channel subunits. We discuss how the underlying mechanisms can be conceived and develop scenarios how the regulation of ion conductances by BACE1 might shape electric activity in the intact and diseased brain and heart.
Collapse
Affiliation(s)
- Sandra Lehnert
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Stephanie Hartmann
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Sabine Hessler
- b School of Psychology , University of Sussex , Brighton , UK
| | - Helmuth Adelsberger
- c Institute of Neuroscience, Technische Universität München , München , Germany
| | - Tobias Huth
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Christian Alzheimer
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
18
|
Abstract
Supplemental Digital Content is Available in the Text. Combining electrophysiology and in vivo pain models, the concept that activation of peripheral KCNQ channels relieves the gout pain is demonstrated. Intense inflammatory pain caused by urate crystals in joints and other tissues is a major symptom of gout. Among therapy drugs that lower urate, benzbromarone (BBR), an inhibitor of urate transporters, is widely used because it is well tolerated and highly effective. We demonstrate that BBR is also an activator of voltage-gated KCNQ potassium channels. In cultured recombinant cells, BBR exhibited significant potentiation effects on KCNQ channels comparable to previously reported classical activators. In native dorsal root ganglion neurons, BBR effectively overcame the suppression of KCNQ currents, and the resultant neuronal hyperexcitability caused by inflammatory mediators, such as bradykinin (BK). Benzbromarone consistently attenuates BK-, formalin-, or monosodium urate–induced inflammatory pain in rat and mouse models. Notably, the analgesic effects of BBR are largely mediated through peripheral and not through central KCNQ channels, an observation supported both by pharmacokinetic studies and in vivo experiments. Moreover, multiple residues in the superficial part of the voltage sensing domain of KCNQ channels were identified critical for the potentiation activity of BBR by a molecular determinant investigation. Our data indicate that activation of peripheral KCNQ channels mediates the pain relief effects of BBR, potentially providing a new strategy for the development of more effective therapies for gout.
Collapse
|
19
|
|
20
|
Schütze S, Orozco IJ, Jentsch TJ. KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors. J Biol Chem 2016; 291:5566-5575. [PMID: 26733196 DOI: 10.1074/jbc.m115.681098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 01/17/2023] Open
Abstract
M-current-mediating KCNQ (Kv7) channels play an important role in regulating the excitability of neuronal cells, as highlighted by mutations in Kcnq2 and Kcnq3 that underlie certain forms of epilepsy. In addition to their expression in brain, KCNQ2 and -3 are also found in the somatosensory system. We have now detected both KCNQ2 and KCNQ3 in a subset of dorsal root ganglia neurons that correspond to D-hair Aδ-fibers and demonstrate KCNQ3 expression in peripheral nerve endings of cutaneous D-hair follicles. Electrophysiological recordings from single D-hair afferents from Kcnq3(-/-) mice showed increased firing frequencies in response to mechanical ramp-and-hold stimuli. This effect was particularly pronounced at slow indentation velocities. Additional reduction of KCNQ2 expression further increased D-hair sensitivity. Together with previous work on the specific role of KCNQ4 in rapidly adapting skin mechanoreceptors, our results show that different KCNQ isoforms are specifically expressed in particular subsets of mechanosensory neurons and modulate their sensitivity directly in sensory nerve endings.
Collapse
Affiliation(s)
- Sebastian Schütze
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125 Berlin and
| | - Ian J Orozco
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125 Berlin and
| | - Thomas J Jentsch
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125 Berlin and; Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
21
|
Cisneros E, Roza C, Jackson N, López-García JA. A New Regulatory Mechanism for Kv7.2 Protein During Neuropathy: Enhanced Transport from the Soma to Axonal Terminals of Injured Sensory Neurons. Front Cell Neurosci 2015; 9:470. [PMID: 26696829 PMCID: PMC4667099 DOI: 10.3389/fncel.2015.00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022] Open
Abstract
Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics.
Collapse
Affiliation(s)
- Elsa Cisneros
- Departamento de Biología de Sistemas, Universidad de Alcalá Alcalá de Henares, Spain
| | - Carolina Roza
- Departamento de Biología de Sistemas, Universidad de Alcalá Alcalá de Henares, Spain
| | - Nieka Jackson
- Departamento de Biología de Sistemas, Universidad de Alcalá Alcalá de Henares, Spain
| | | |
Collapse
|
22
|
Cheng CF, Wang WC, Huang CY, Du PH, Yang JH, Tsaur ML. Coexpression of auxiliary subunits KChIP and DPPL in potassium channel Kv4-positive nociceptors and pain-modulating spinal interneurons. J Comp Neurol 2015; 524:846-73. [PMID: 26239200 DOI: 10.1002/cne.23876] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
Subthreshold A-type K(+) currents (ISA s) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISA s. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits and two types of auxiliary subunits: K(+) channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA -expressing pain-related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA -expressing nociceptors and pain-modulating spinal interneurons.
Collapse
Affiliation(s)
- Chau-Fu Cheng
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chen Wang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yi Huang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hau Du
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jung-Hui Yang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Meei-Ling Tsaur
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Lyu C, Mulder J, Barde S, Sahlholm K, Zeberg H, Nilsson J, Århem P, Hökfelt T, Fried K, Shi TJS. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy. Mol Pain 2015. [PMID: 26199148 PMCID: PMC4511542 DOI: 10.1186/s12990-015-0044-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Increased nociceptive neuronal excitability underlies chronic pain conditions. Various ion channels, including sodium, calcium and potassium channels have pivotal roles in the control of neuronal excitability. The members of the family of G protein-gated inwardly rectifying potassium (GIRK) channels, GIRK1–4, have been implicated in modulating excitability. Here, we investigated the expression and distribution of GIRK1 and GIRK2 in normal and injured dorsal root ganglia (DRGs) and spinal cord of rats. Results We found that ~70% of the DRG neurons expressed GIRK1, while only <10% expressed GIRK2. The neurochemical profiles of GIRK1- and GIRK2-immunoreactive neurons were characterized using the neuronal markers calcitonin gene-related peptide, isolectin-B4 and neurofilament-200, and the calcium-binding proteins calbindin D28k, calretinin, parvalbumin and secretagogin. Both GIRK subunits were expressed in DRG neurons with nociceptive characteristics. However, while GIRK1 was widely expressed in several sensory neuronal subtypes, GIRK2 was detected mainly in a group of small C-fiber neurons. In the spinal dorsal horn, GIRK1- and -2-positive cell bodies and processes were mainly observed in lamina II, but also in superficial and deeper layers. Abundant GIRK1-, but not GIRK2-like immunoreactivity, was found in the ventral horn (laminae VI–X). Fourteen days after axotomy, GIRK1 and GIRK2 were down-regulated in DRG neurons at the mRNA and protein levels. Both after axotomy and rhizotomy there was a reduction of GIRK1- and -2-positive processes in the dorsal horn, suggesting a presynaptic localization of these potassium channels. Furthermore, nerve ligation caused accumulation of both subunits on both sides of the lesion, providing evidence for anterograde and retrograde fast axonal transport. Conclusions Our data support the hypothesis that reduced GIRK function is associated with increased neuronal excitability and causes sensory disturbances in post-injury conditions, including neuropathic pain. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0044-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuang Lyu
- School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Johanna Nilsson
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Peter Århem
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tie-Jun Sten Shi
- School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
24
|
Gamper N, Ooi L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal 2015; 22:486-504. [PMID: 24735331 PMCID: PMC4323017 DOI: 10.1089/ars.2014.5884] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. RECENT ADVANCES Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. CRITICAL ISSUES The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. FUTURE DIRECTIONS Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics.
Collapse
Affiliation(s)
- Nikita Gamper
- 1 Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
25
|
Wodarski R, Schuh-Hofer S, Yurek DA, Wafford KA, Gilmour G, Treede RD, Kennedy JD. Development and pharmacological characterization of a model of sleep disruption-induced hypersensitivity in the rat. Eur J Pain 2014; 19:554-66. [PMID: 25195796 DOI: 10.1002/ejp.580] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sleep disturbance is a commonly reported co-morbidity in chronic pain patients, and conversely, disruption of sleep can cause acute and long-lasting hypersensitivity to painful stimuli. The underlying mechanisms of sleep disruption-induced pain hypersensitivity are poorly understood. Confounding factors of previous studies have been the sleep disruption protocols, such as the 'pedestal over water' or 'inverted flower pot' methods, that can cause large stress responses and therefore may significantly affect pain outcome measures. METHODS Sleep disruption was induced by placing rats for 8 h in a slowly rotating cylindrical cage causing arousal via the righting reflex. Mechanical (Von Frey filaments) and thermal (Hargreaves) nociceptive thresholds were assessed, and plasma corticosterone levels were measured (mass spectroscopy). Sleep disruption-induced hypersensitivity was pharmacologically characterized with drugs relevant for pain treatment, including gabapentin (30 mg/kg and 50 mg/kg), Ica-6p (Kv7.2/7.3 potassium channel opener; 10 mg/kg), ibuprofen (30 mg/kg and 100 mg/kg) and amitriptyline (10 mg/kg). RESULTS Eight hours of sleep disruption caused robust mechanical and heat hypersensitivity in the absence of a measurable change in plasma corticosterone levels. Gabapentin had no effect on reduced nociceptive thresholds. Ibuprofen attenuated mechanical thresholds, while Ica-6p and amitriptyline attenuated only reduced thermal nociceptive thresholds. CONCLUSIONS These results show that acute and low-stress sleep disruption causes mechanical and heat hypersensitivity in rats. Mechanical and heat hypersensitivity exhibited differential sensitivity to pharmacological agents, thus suggesting dissociable mechanisms for those two modalities. Ultimately, this model could help identify underlying mechanisms linking sleep disruption and hypersensitivity.
Collapse
Affiliation(s)
- R Wodarski
- Eli Lilly & Company, Neuroscience Discovery, Erl Wood Manor, Windlesham, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Du X, Hao H, Gigout S, Huang D, Yang Y, Li L, Wang C, Sundt D, Jaffe DB, Zhang H, Gamper N. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission. Pain 2014; 155:2306-22. [PMID: 25168672 PMCID: PMC4247381 DOI: 10.1016/j.pain.2014.08.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/02/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023]
Abstract
Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China.
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Sylvain Gigout
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Dongyang Huang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Yuehui Yang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Li Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Caixue Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Danielle Sundt
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - David B Jaffe
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China; Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
27
|
King CH, Lancaster E, Salomon D, Peles E, Scherer SS. Kv7.2 regulates the function of peripheral sensory neurons. J Comp Neurol 2014; 522:3262-80. [PMID: 24687876 DOI: 10.1002/cne.23595] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/08/2022]
Abstract
The Kv7 (KCNQ) family of voltage-gated K(+) channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole-cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons.
Collapse
Affiliation(s)
- Chih H King
- Department of Neuroscience, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104
| | | | | | | | | |
Collapse
|
28
|
Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci 2014; 37:146-58. [PMID: 24461875 PMCID: PMC3945816 DOI: 10.1016/j.tins.2013.12.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023]
Abstract
Potassium (K+) channels are crucial determinants of neuronal excitability. Nerve injury or inflammation alters K+ channel activity in neurons of the pain pathway. These changes can render neurons hyperexcitable and cause chronic pain. Therapies targeting K+ channels may provide improved pain relief in these states.
Chronic pain is associated with abnormal excitability of the somatosensory system and remains poorly treated in the clinic. Potassium (K+) channels are crucial determinants of neuronal activity throughout the nervous system. Opening of these channels facilitates a hyperpolarizing K+ efflux across the plasma membrane that counteracts inward ion conductance and therefore limits neuronal excitability. Accumulating research has highlighted a prominent involvement of K+ channels in nociceptive processing, particularly in determining peripheral hyperexcitability. We review salient findings from expression, pharmacological, and genetic studies that have untangled a hitherto undervalued contribution of K+ channels in maladaptive pain signaling. These emerging data provide a framework to explain enigmatic pain syndromes and to design novel pharmacological treatments for these debilitating states.
Collapse
|
29
|
Abstract
Topically applied camphor elicits a sensation of cool, but nothing is known about how it affects cold temperature sensing. We found that camphor sensitizes a subpopulation of menthol-sensitive native cutaneous nociceptors in the mouse to cold, but desensitizes and partially blocks heterologously expressed TRPM8 (transient receptor potential cation channel subfamily M member 8). In contrast, camphor reduces potassium outward currents in cultured sensory neurons and, in cold nociceptors, the cold-sensitizing effects of camphor and menthol are additive. Using a membrane potential dye-based screening assay and heterologously expressed potassium channels, we found that the effects of camphor are mediated by inhibition of Kv7.2/3 channels subtypes that generate the M-current in neurons. In line with this finding, the specific M-current blocker XE991 reproduced the cold-sensitizing effect of camphor in nociceptors. However, the M-channel blocking effects of XE991 and camphor are not sufficient to initiate cold transduction but require a cold-activated inward current generated by TRPM8. The cold-sensitizing effects of XE991 and camphor are largest in high-threshold cold nociceptors. Low-threshold corneal cold thermoreceptors that express high levels of TRPM8 and lack potassium channels are not affected by camphor. We also found that menthol--like camphor--potently inhibits Kv7.2/3 channels. The apparent functional synergism arising from TRPM8 activation and M-current block can improve the effectiveness of topical coolants and cooling lotions, and may also enhance TRPM8-mediated analgesia.
Collapse
|
30
|
Du X, Gamper N. Potassium channels in peripheral pain pathways: expression, function and therapeutic potential. Curr Neuropharmacol 2013; 11:621-40. [PMID: 24396338 PMCID: PMC3849788 DOI: 10.2174/1570159x113119990042] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
31
|
Abstract
Electrophysiological recordings from an acutely sliced preparation provide information on ionic currents and excitability of native neurons under near physiological conditions. Although this technique is commonly used on central nervous system structures such as spinal cord and brain, structures within the peripheral nervous system (including sensory ganglia and fibers) have proven to be much more difficult to study in acute preparations. Here we describe a method for patch-clamp recordings from rat dorsal root ganglion (DRG) slices.
Collapse
|
32
|
Hendrich J, Alvarez P, Joseph EK, Chen X, Bogen O, Levine JD. Electrophysiological correlates of hyperalgesic priming in vitro and in vivo. Pain 2013; 154:2207-2215. [PMID: 23831864 DOI: 10.1016/j.pain.2013.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 06/04/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022]
Abstract
We have modeled the transition from acute to chronic pain in the rat. In this model (termed hyperalgesic priming) a chronic state develops after a prior inflammatory process or exposure to an inflammatory mediator, in which response to subsequent exposure to prostaglandin E2 (PGE2) is characterized by a protein kinase Cε-dependent marked prolongation of mechanical hyperalgesia. To assess the effect of priming on the function of the nociceptor, we have performed in vitro patch clamp and in vivo single-fiber electrophysiology studies using tumor necrosis factor α to induce priming. In vitro, the only change observed in nociceptors cultured from primed animals was a marked hyperpolarization in resting membrane potential (RMP); prolonged sensitization, measured at 60 minutes, could not be tested in vitro. However, complimentary with behavioral findings, in vivo baseline mechanical nociceptive threshold was significantly elevated compared to controls. Thirty minutes after injection of PGE2 into the peripheral receptive field, both primed and control nociceptors showed enhanced response to mechanical stimulation. However, 60 minutes after PGE2 administration, the response to mechanical stimulation was further increased in primed but not in control nociceptors. Thus, at the level of the primary afferent nociceptor, it is possible to demonstrate both altered function at baseline and prolonged PGE2-induced sensitization. Intrathecal antisense (AS) to Kv7.2, which contributes to RMP in sensory neurons, reversibly prevented the expression of priming in both behavioral and single-fiber electrophysiology experiments, implicating these channels in the expression of hyperalgesic priming.
Collapse
Affiliation(s)
- Jan Hendrich
- Department of Oral and Maxillofacial Surgery, University of California at San Francisco, CA, USA Division of Neuroscience, University of California at San Francisco, CA, USA Department of Medicine, University of California at San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Visockis V, King AE. M-channels modulate network excitatory activity induced by 4-aminopyridine in immature rat substantia gelatinosa in vitro. Brain Res 2013; 1513:9-16. [PMID: 23566815 DOI: 10.1016/j.brainres.2013.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 11/25/2022]
Abstract
There is strong evidence that M-currents modulate peripheral sensory afferent excitability and that altered M-current efficacy may underpin aspects of pain-induced nociceptor sensitization. Less clear is the role of the M-current in regulating central excitability within spinal dorsal horn nociceptive circuitry. In this study, an in vitro model of central hyperexcitability that uses the potassium channel blocker 4-aminopyridine (4-AP) to induce large amplitude population spikes and 4-12Hz oscillatory activity within rat spinal substantia gelatinosa (SG) has been used to determine the impact of pharmacological modulation of the M-current on central excitability. The M-current enhancers Retigabine (10 and 30μM) and Flupirtine (30μM) had a depressant effect on 4-AP-induced excitation in SG such that the frequency of large amplitude population spikes and the power of 4-12Hz oscillatory activity were both significantly reduced. In contrast, the M-current blockers XE911 (5μM) or Linopirdine (20μM) significantly potentiated 4-12Hz oscillatory activity as evidenced by significant increases in the parameters of power amplitude and power area but had no effect on large amplitude population spikes. These data indicate that pharmacological modulation of the M-current can influence excitability of nociceptive circuitry especially under conditions of central hyperexcitability, as may occur in chronic pain conditions. It is not clear whether these effects reflect a direct effect on interneurones localized to SG or indirectly via sensory afferent terminals. Nonetheless, these central actions should be taken into account alongside peripheral actions in terms of evaluating the potential therapeutic analgesic potency of novel M-current enhancers.
Collapse
Affiliation(s)
- V Visockis
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
34
|
Ankyrin-B structurally defines terminal microdomains of peripheral somatosensory axons. Brain Struct Funct 2012; 218:1005-16. [DOI: 10.1007/s00429-012-0443-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 01/18/2023]
|
35
|
Passmore GM, Reilly JM, Thakur M, Keasberry VN, Marsh SJ, Dickenson AH, Brown DA. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings. Front Mol Neurosci 2012; 5:63. [PMID: 22593734 PMCID: PMC3351001 DOI: 10.3389/fnmol.2012.00063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/24/2012] [Indexed: 11/13/2022] Open
Abstract
M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991.
Collapse
Affiliation(s)
- Gayle M. Passmore
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Joanne M. Reilly
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Matthew Thakur
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Vanessa N. Keasberry
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
- Department of Cell Physiology and Pharmacology, University of LeicesterLeicester, UK
| | - Stephen J. Marsh
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - David A. Brown
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| |
Collapse
|