1
|
Patil YP, Wagh DS, Barvkar VT, Gawari SK, Pisalwar PD, Ahmed S, Joshi RS. Altered Octopamine synthesis impairs tyrosine metabolism affecting Helicoverpa armigera vitality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106323. [PMID: 40015913 DOI: 10.1016/j.pestbp.2025.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Tyramine β-hydroxylase (TβH) is a key enzyme in the biosynthesis of octopamine (OA), a vital neurohormone in invertebrates. This study explores the expression patterns and functional role of Helicoverpa armigera TβH (HaTβH) across various tissues and developmental stages. HaTβH expression was highest in the head and adult male stages, reflecting tissue-specific and developmental regulation. HaTβH silencing significantly increased locomotion and decreased feeding behavior. OA supplementation in silenced insects or HaTβH overexpression showed a contrary effect on locomotory and feeding behavior. In silico screening and inhibitory assays identified tomatidine, a tomato-derived metabolite, as a potent HaTβH inhibitor with strong binding affinity. In vivo bioassays confirmed tomatidine's inhibitory effects, reducing feeding and increasing mortality in H. armigera. Modulation in HaTβH expression or activity disturbs the tyrosine metabolic pathway, with altered levels of tyramine, octopamine, and dopamine. These results highlight HaTβH as a key regulator of OA biosynthesis, influencing insect feeding, locomotion, and overall survival. The present study also introduces tomatidine as a potential candidate for insect control, given its ability to disrupt HaTβH function. This work provides new insights into the physiological roles of HaTβH and offers promising avenues for developing targeted pest management strategies.
Collapse
Affiliation(s)
- Yogita P Patil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Deepti S Wagh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Shyam K Gawari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Priyanka D Pisalwar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Shadab Ahmed
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Rakesh S Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Jahn S, Althaus V, Seip A, Rotella S, Heckmann J, Janning M, Kolano J, Kaufmann A, Homberg U. Neuroarchitecture of the Central Complex in the Madeira Cockroach Rhyparobia maderae: Tangential Neurons. J Comp Neurol 2024; 532:e70009. [PMID: 39658819 PMCID: PMC11632141 DOI: 10.1002/cne.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Navigating in diverse environments to find food, shelter, or mating partners is an important ability for nearly all animals. Insects have evolved diverse navigational strategies to survive in challenging and unknown environments. In the insect brain, the central complex (CX) plays an important role in spatial orientation and directed locomotion. It consists of the protocerebral bridge (PB), the central body with upper (CBU) and lower division (CBL), and the paired noduli (NO). As shown in various insect species, the CX integrates multisensory cues, including sky compass signals, wind direction, and ego-motion to provide goal-directed vector output used for steering locomotion and flight. While most of these data originate from studies on day-active insects, less is known about night-active species such as cockroaches. Following our analysis of columnar and pontine neurons, the present study complements our investigation of the cellular architecture of the CX of the Madeira cockroach by analyzing tangential neurons. Based on single-cell tracer injections, we provide further details on the internal organization of the CX and distinguished 27 types of tangential neuron, including three types of neuron innervating the PB, six types of the CBL, and 18 types of the CBU. The anterior lip, a brain area unknown in flies and highly reduced in bees, and the crepine are strongly connected to the cockroach CBU in contrast to other insect species. One tangential neuron of the CBU revealed a direct connection between the mushroom bodies and the CBU.
Collapse
Affiliation(s)
- Stefanie Jahn
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Vanessa Althaus
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Ann‐Katrin Seip
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Saron Rotella
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Jannik Heckmann
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Mona Janning
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Juliana Kolano
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Aurelia Kaufmann
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Uwe Homberg
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
- Center for Mind Brain and Behavior (CMBB)University of Marburg and Justus Liebig University of GiessenMarburgGermany
| |
Collapse
|
3
|
Pabst K, Gkanias E, Webb B, Homberg U, Endres D. A computational model for angular velocity integration in a locust heading circuit. PLoS Comput Biol 2024; 20:e1012155. [PMID: 39705331 DOI: 10.1371/journal.pcbi.1012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/06/2025] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Accurate navigation often requires the maintenance of a robust internal estimate of heading relative to external surroundings. We present a model for angular velocity integration in a desert locust heading circuit, applying concepts from early theoretical work on heading circuits in mammals to a novel biological context in insects. In contrast to similar models proposed for the fruit fly, this circuit model uses a single 360° heading direction representation and is updated by neuromodulatory angular velocity inputs. Our computational model was implemented using steady-state firing rate neurons with dynamical synapses. The circuit connectivity was constrained by biological data, and remaining degrees of freedom were optimised with a machine learning approach to yield physiologically plausible neuron activities. We demonstrate that the integration of heading and angular velocity in this circuit is robust to noise. The heading signal can be effectively used as input to an existing insect goal-directed steering circuit, adapted for outbound locomotion in a steady direction that resembles locust migration. Our study supports the possibility that similar computations for orientation may be implemented differently in the neural hardware of the fruit fly and the locust.
Collapse
Affiliation(s)
- Kathrin Pabst
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| | - Evripidis Gkanias
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Uwe Homberg
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Dominik Endres
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| |
Collapse
|
4
|
Kandimalla P, Omoto JJ, Hong EJ, Hartenstein V. Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:679-720. [PMID: 36932234 PMCID: PMC10354165 DOI: 10.1007/s00359-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 03/19/2023]
Abstract
The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution. Insect brains develop from ~ 100 neuroblasts per hemisphere that divide systematically to form "lineages" of sister neurons, that project to their target neuropils along anatomically characteristic tracts. Overlaying this developmental tract information onto the recently generated Drosophila "hemibrain" connectome and integrating this information with the anatomical and physiological recording of neurons in other species, we observe neuropil and lineage-specific innervation, connectivity, and activity profiles in CX input channels. We posit that the proliferative potential of neuroblasts and the lineage-based architecture of information channels enable the modification of neural networks across existing, novel, and deprecated modalities in a species-specific manner, thus forming the substrate for the evolution and diversification of insect navigational circuits.
Collapse
Affiliation(s)
- Pratyush Kandimalla
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| | - Jaison Jiro Omoto
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
The sky compass network in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01601-x. [PMID: 36550368 DOI: 10.1007/s00359-022-01601-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Many arthropods and vertebrates use celestial signals such as the position of the sun during the day or stars at night as compass cues for spatial orientation. The neural network underlying sky compass coding in the brain has been studied in great detail in the desert locust Schistocerca gregaria. These insects perform long-range migrations in Northern Africa and the Middle East following seasonal changes in rainfall. Highly specialized photoreceptors in a dorsal rim area of their compound eyes are sensitive to the polarization of the sky, generated by scattered sunlight. These signals are combined with direct information on the sun position in the optic lobe and anterior optic tubercle and converge from both eyes in a midline crossing brain structure, the central complex. Here, head direction coding is achieved by a compass-like arrangement of columns signaling solar azimuth through a 360° range of space by combining direct brightness cues from the sun with polarization cues matching the polarization pattern of the sky. Other directional cues derived from wind direction and internal self-rotation input are likely integrated. Signals are transmitted as coherent steering commands to descending neurons for directional control of locomotion and flight.
Collapse
|
6
|
Bosse JW, Svenson GJ, Bowers TA, Bourges-Sevenier BM, Ritzmann RE. Context dependent effects on attack and defense behaviors in the praying mantis Tenodera sinensis. J Exp Biol 2022; 225:275277. [PMID: 35502775 DOI: 10.1242/jeb.243710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
Most behavior needs to strike a balance between the competing needs to find food and protect an animal from predators. The factors that influence this balance and the resulting behavior are not well understood in many animals. Here we examined these influences in the praying mantis Tenodera sinensis (Saussure) by presenting perching individuals with alternating sinusoidally moving prey-like stimuli and rapidly expanding looming stimuli then scoring their behavior on a defensive - aggressive scale. In this way, we tested the hypothesis that such behaviors are highly context dependent. Specifically, we found that defensive responses, which are normally very consistent, are decreased in magnitude if the animal has just performed an aggressive response to the previous sinusoid. A thrash behavior not normally seen with looming alone was often seen following aggression. In thrashing the animal tries to push the looming stimulus away. It almost exclusively followed aggressive responses to the sinusoid stimulus. Moreover, aggression levels were found to shift from low to high and back to low as adult animals aged and, in general, female mantises were more aggressive than males. Finally, the specific nature of the mid-life spike in aggressive behaviors differed according to whether the animals were lab-raised or caught in the wild. Lab raised animals showed roughly equal amounts of increased attention to the stimulus and very aggressive strike behaviors whereas wild caught animals tended to either ignore the stimulus or react very aggressively with strikes. Therefore, our hypothesis regarding context dependent effects was supported with all 4 factors influencing the behaviors that were studied.
Collapse
Affiliation(s)
- Jacob W Bosse
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gavin J Svenson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Invertebrate Zoology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA
| | - Troy A Bowers
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | | | - Roy E Ritzmann
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
von Hadeln J, Hensgen R, Bockhorst T, Rosner R, Heidasch R, Pegel U, Quintero Pérez M, Homberg U. Neuroarchitecture of the central complex of the desert locust: Tangential neurons. J Comp Neurol 2019; 528:906-934. [PMID: 31625611 DOI: 10.1002/cne.24796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.
Collapse
Affiliation(s)
- Joss von Hadeln
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronja Hensgen
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Tobias Bockhorst
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Rosner
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Heidasch
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Manuel Quintero Pérez
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
8
|
Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state. Proc Natl Acad Sci U S A 2019; 116:3805-3810. [PMID: 30808766 DOI: 10.1073/pnas.1813554116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adrenergic signaling profoundly modulates animal behavior. For example, the invertebrate counterpart of norepinephrine, octopamine, and its biological precursor and functional antagonist, tyramine, adjust motor behavior to different nutritional states. In Drosophila larvae, food deprivation increases locomotor speed via octopamine-mediated structural plasticity of neuromuscular synapses, whereas tyramine reduces locomotor speed, but the underlying cellular and molecular mechanisms remain unknown. We show that tyramine is released into the CNS to reduce motoneuron intrinsic excitability and responses to excitatory cholinergic input, both by tyraminehonoka receptor activation and by downstream decrease of L-type calcium current. This central effect of tyramine on motoneurons is required for the adaptive reduction of locomotor activity after feeding. Similarly, peripheral octopamine action on motoneurons has been reported to be required for increasing locomotion upon starvation. We further show that the level of tyramine-β-hydroxylase (TBH), the enzyme that converts tyramine into octopamine in aminergic neurons, is increased by food deprivation, thus selecting between antagonistic amine actions on motoneurons. Therefore, octopamine and tyramine provide global but distinctly different mechanisms to regulate motoneuron excitability and behavioral plasticity, and their antagonistic actions are balanced within a dynamic range by nutritional effects on TBH.
Collapse
|
9
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
10
|
Xu L, Jiang HB, Chen XF, Xiong Y, Lu XP, Pei YX, Smagghe G, Wang JJ. How Tyramine β-Hydroxylase Controls the Production of Octopamine, Modulating the Mobility of Beetles. Int J Mol Sci 2018; 19:E846. [PMID: 29538302 PMCID: PMC5877707 DOI: 10.3390/ijms19030846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022] Open
Abstract
Biogenic amines perform many kinds of important physiological functions in the central nervous system (CNS) of insects, acting as neuromodulators, neurotransmitters, and neurohormones. The five most abundant types of biogenic amines in invertebrates are dopamine, histamine, serotonin, tyramine, and octopamine (OA). However, in beetles, an important group of model and pest insects, the role of tyramine β-hydroxylase (TβH) in the OA biosynthesis pathway and the regulation of behavior remains unknown so far. We therefore investigated the molecular characterization and spatiotemporal expression profiles of TβH in red flour beetles (Triboliun castaneum). Most importantly, we detected the production of OA and measured the crawling speed of beetles after dsTcTβH injection. We concluded that TcTβH controls the biosynthesis amount of OA in the CNS, and this in turn modulates the mobility of the beetles. Our new results provided basic information about the key genes in the OA biosynthesis pathway of the beetles, and expanded our knowledge on the physiological functions of OA in insects.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Xiao-Feng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Ying Xiong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Yu-Xia Pei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Sinakevitch IT, Daskalova SM, Smith BH. The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee ( Apis mellifera) Brain. Front Syst Neurosci 2017; 11:77. [PMID: 29114209 PMCID: PMC5660842 DOI: 10.3389/fnsys.2017.00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/02/2017] [Indexed: 11/13/2022] Open
Abstract
This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes), tritocerebrum and subesophageal ganglion (SEG). Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx) with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs). In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs) located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx) neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release.
Collapse
Affiliation(s)
| | - Sasha M Daskalova
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ, United States
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
12
|
Thamm M, Scholl C, Reim T, Grübel K, Möller K, Rössler W, Scheiner R. Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain. J Comp Neurol 2017; 525:2615-2631. [DOI: 10.1002/cne.24228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Markus Thamm
- Behavioral Physiology & SociobiologyBiocenter, University of WürzburgAm Hubland Würzburg Germany
| | - Christina Scholl
- Behavioral Physiology & SociobiologyBiocenter, University of WürzburgAm Hubland Würzburg Germany
| | - Tina Reim
- Animal Physiology, Institute for Biochemistry and Biology, University of PotsdamPotsdam Germany
| | - Kornelia Grübel
- Behavioral Physiology & SociobiologyBiocenter, University of WürzburgAm Hubland Würzburg Germany
| | - Karin Möller
- Behavioral Physiology & SociobiologyBiocenter, University of WürzburgAm Hubland Würzburg Germany
| | - Wolfgang Rössler
- Behavioral Physiology & SociobiologyBiocenter, University of WürzburgAm Hubland Würzburg Germany
| | - Ricarda Scheiner
- Behavioral Physiology & SociobiologyBiocenter, University of WürzburgAm Hubland Würzburg Germany
| |
Collapse
|
13
|
Identification of multiple functional receptors for tyramine on an insect secretory epithelium. Sci Rep 2017; 7:168. [PMID: 28279025 PMCID: PMC5427925 DOI: 10.1038/s41598-017-00120-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
The biogenic amine tyramine (TA) regulates many aspects of invertebrate physiology and development. Although three TA receptor subtypes have been identified (TAR1-3), specific receptors have not been linked to physiological responses in native tissue. In the Malpighian (renal) tubule of Drosophila melanogaster, TA activates a transepithelial chloride conductance, resulting in diuresis and depolarization of the transepithelial potential. In the current work, mutation or RNAi-mediated knockdown in the stellate cells of the tubule of TAR2 (tyrR, CG7431) resulted in a dramatic reduction, but not elimination, of the TA-mediated depolarization. Mutation or knockdown of TAR3 (tyrRII, CG16766) had no effect. However, deletion of both genes, or knockdown of TAR3 on a TAR2 mutant background, eliminated the TA responses. Thus while TAR2 is responsible for the majority of the TA sensitivity of the tubule, TAR3 also contributes to the response. Knockdown or mutation of TAR2 also eliminated the response of tubules to the related amine octopamine (OA), indicating that OA can activate TAR2. This finding contrasts to reports that heterologously expressed TAR2 is highly selective for TA over OA. This is the first report of TA receptor function in a native tissue and indicates unexpected complexity in the physiology of the Malpighian tubule.
Collapse
|
14
|
Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana. PLoS One 2016; 11:e0160531. [PMID: 27494326 PMCID: PMC4975486 DOI: 10.1371/journal.pone.0160531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects.
Collapse
|
15
|
Characterization of a prawn OA/TA receptor in Xenopus oocytes suggests functional selectivity between octopamine and tyramine. PLoS One 2014; 9:e111314. [PMID: 25350749 PMCID: PMC4211885 DOI: 10.1371/journal.pone.0111314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
Here we report the characterization of an octopamine/tyramine (OA/TA or TyrR1) receptor (OA/TAMac) cloned from the freshwater prawn, Macrobrachium rosenbergii, an animal used in the study of agonistic social behavior. The invertebrate OA/TA receptors are seven trans-membrane domain G-protein coupled receptors that are related to vertebrate adrenergic receptors. Behavioral studies in arthropods indicate that octopaminergic signaling systems modulate fight or flight behaviors with octopamine and/or tyramine functioning in a similar way to the adrenalins in vertebrate systems. Despite the importance of octopamine signaling in behavioral studies of decapod crustaceans there are no functional data available for any of their octopamine or tyramine receptors. We expressed OA/TAMac in Xenopus oocytes where agonist-evoked trans-membrane currents were used as readouts of receptor activity. The currents were most effectively evoked by tyramine but were also evoked by octopamine and dopamine. They were effectively blocked by yohimbine. The electrophysiological approach we used enabled the continuous observation of complex dynamics over time. Using voltage steps, we were able to simultaneously resolve two types of endogenous currents that are affected over different time scales. At higher concentrations we observe that octopamine and tyramine can produce different and opposing effects on both of these currents, presumably through the activity of the single expressed receptor type. The pharmacological profile and apparent functional-selectivity are consistent with properties first observed in the OA/TA receptor from the insect Drosophila melanogaster. As the first functional data reported for any crustacean OA/TA receptor, these results suggest that functional-selectivity between tyramine and octopamine is a feature of this receptor type that may be conserved among arthropods.
Collapse
|
16
|
Haverkamp A, Smid HM. Octopamine-like immunoreactive neurons in the brain and subesophageal ganglion of the parasitic wasps Nasonia vitripennis and N. giraulti. Cell Tissue Res 2014; 358:313-29. [PMID: 25107606 DOI: 10.1007/s00441-014-1960-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/03/2014] [Indexed: 10/24/2022]
Abstract
Octopamine is an important neuromodulator in the insect nervous system, influencing memory formation, sensory perception and motor control. In this study, we compare the distribution of octopamine-like immunoreactive neurons in two parasitic wasp species of the Nasonia genus, N. vitripennis and N. giraulti. These two species were previously described as differing in their learning and memory formation, which raised the question as to whether morphological differences in octopaminergic neurons underpinned these variations. Immunohistochemistry in combination with confocal laser scanning microscopy was used to reveal and compare the somata and major projections of the octopaminergic neurons in these wasps. The brains of both species showed similar staining patterns, with six different neuron clusters being identified in the brain and five different clusters in the subesophageal ganglion. Of those clusters found in the subesophageal ganglion, three contained unpaired neurons, whereas the other three consisted in paired neurons. The overall pattern of octopaminergic neurons in both species was similar, with no differences in the numbers or projections of the ventral unpaired median (VUM) neurons, which are known to be involved in memory formation in insects. In one other cluster in the brain, located in-between the optic lobe and the antennal lobe, we detected more neurons in N. vitripennis compared with N. giraulti. Combining our results with findings made previously in other Hymenopteran species, we discuss possible functions and some of the ultimate factors influencing the evolution of the octopaminergic system in the insect brain.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, The Netherlands
| | | |
Collapse
|
17
|
Libersat F, Gal R. Wasp Voodoo Rituals, Venom-Cocktails, and the Zombification of Cockroach Hosts. Integr Comp Biol 2014; 54:129-42. [DOI: 10.1093/icb/icu006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Martin C, Mayer G. Neuronal tracing of oral nerves in a velvet worm-Implications for the evolution of the ecdysozoan brain. Front Neuroanat 2014; 8:7. [PMID: 24616668 PMCID: PMC3935231 DOI: 10.3389/fnana.2014.00007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/02/2014] [Indexed: 12/29/2022] Open
Abstract
As one of the closest relatives of arthropods, Onychophora plays an important role in understanding the evolution of arthropod body plans. Currently there is controversy surrounding the evolution of the brain among the ecdysozoan clades, which shows a collar-shaped, circumoral organization in cycloneuralians but a ganglionic architecture in panarthropods. Based on the innervation pattern of lip papillae surrounding the mouth, the onychophoran brain has been interpreted as a circumoral ring, suggesting that this organization is an ancestral feature of Ecdysozoa. However, this interpretation is inconsistent with other published data. To explore the evolutionary origin of the onychophoran mouth and to shed light on the evolution of the ecdysozoan brains, we analyzed the innervation pattern and morphogenesis of the oral lip papillae in the onychophoran Euperipatoides rowelli using DNA labeling, immunocytochemistry, and neuronal tracing techniques. Our morphogenetic data revealed that the seven paired and one unpaired oral lip papillae arise from three anterior-most body segments. Retrograde fills show that only the first and the third nerves supplying the lip papillae are associated with cell bodies within the brain, whereas the second nerve exclusively receives fibers from somata of peripheral neurons located in the lip papillae. According to our anterograde fills and immunocytochemical data, the first nerve supplies the anterior-most pair of lip papillae, whereas the second and the third nerves are associated with the second to fifth and second to eighth lip papillae, respectively. These data suggest that the lip papillae of E. rowelli are mainly innervated by the proto- and deutocerebrum, whereas there are only a few additional cell bodies situated posterior to the brain. According to these findings, the overall innervation pattern of the oral lip papillae in E. rowelli is incompatible with the interpretation of the onychophoran brain as a modified circumoral ring.
Collapse
Affiliation(s)
- Christine Martin
- Animal Evolution & Development, Institute of Biology, University of Leipzig Leipzig, Germany
| | - Georg Mayer
- Animal Evolution & Development, Institute of Biology, University of Leipzig Leipzig, Germany
| |
Collapse
|
19
|
Pfeiffer K, Homberg U. Organization and functional roles of the central complex in the insect brain. ANNUAL REVIEW OF ENTOMOLOGY 2014; 59:165-84. [PMID: 24160424 DOI: 10.1146/annurev-ento-011613-162031] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The central complex is a group of modular neuropils across the midline of the insect brain. Hallmarks of its anatomical organization are discrete layers, an organization into arrays of 16 slices along the right-left axis, and precise inter-hemispheric connections via chiasmata. The central complex is connected most prominently with the adjacent lateral complex and the superior protocerebrum. Its developmental appearance corresponds with the appearance of compound eyes and walking legs. Distinct dopaminergic neurons control various forms of arousal. Electrophysiological studies provide evidence for roles in polarized light vision, sky compass orientation, and integration of spatial information for locomotor control. Behavioral studies on mutant and transgenic flies indicate roles in spatial representation of visual cues, spatial visual memory, directional control of walking and flight, and place learning. The data suggest that spatial azimuthal directions (i.e., where) are represented in the slices, and cue information (i.e., what) are represented in different layers of the central complex.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Faculty of Biology, Animal Physiology, University of Marburg, 35032 Marburg, Germany; ,
| | | |
Collapse
|
20
|
Ormerod KG, Hadden JK, Deady LD, Mercier AJ, Krans JL. Action of octopamine and tyramine on muscles of Drosophila melanogaster larvae. J Neurophysiol 2013; 110:1984-96. [DOI: 10.1152/jn.00431.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.
Collapse
Affiliation(s)
- Kiel G. Ormerod
- Department of Biological Sciences, Brock University, Saint Catharines, Ontario, Canada; and
| | - Julia K. Hadden
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| | - Lylah D. Deady
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| | - A. Joffre Mercier
- Department of Biological Sciences, Brock University, Saint Catharines, Ontario, Canada; and
| | - Jacob L. Krans
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| |
Collapse
|
21
|
Rillich J, Stevenson PA, Pflueger HJ. Flight and walking in locusts-cholinergic co-activation, temporal coupling and its modulation by biogenic amines. PLoS One 2013; 8:e62899. [PMID: 23671643 PMCID: PMC3650027 DOI: 10.1371/journal.pone.0062899] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/26/2013] [Indexed: 12/21/2022] Open
Abstract
Walking and flying in locusts are exemplary rhythmical behaviors generated by central pattern generators (CPG) that are tuned in intact animals by phasic sensory inputs. Although these two behaviors are mutually exclusive and controlled by independent CPGs, leg movements during flight can be coupled to the flight rhythm. To investigate potential central coupling between the underlying CPGs, we used the muscarinic agonist pilocarpine and the amines octopamine and tyramine to initiate fictive flight and walking in deafferented locust preparations. Our data illustrate that fictive walking is readily evoked by comparatively lower concentrations of pilocarpine, whereas higher concentrations are required to elicit fictive flight. Interestingly, fictive flight did not suppress fictive walking so that the two patterns were produced simultaneously. Frequently, leg motor units were temporally coupled to the flight rhythm, so that each spike in a step cycle volley occurred synchronously with wing motor units firing at flight rhythm frequency. Similarly, tyramine also induced fictive walking and flight, but mostly without any coupling between the two rhythms. Octopamine in contrast readily evoked fictive flight but generally failed to elicit fictive walking. Despite this, numerous leg motor units were recruited, whereby each was temporarily coupled to the flight rhythm. Our results support the notion that the CPGs for walking and flight are largely independent, but that coupling can be entrained by aminergic modulation. We speculate that octopamine biases the whole motor machinery of a locust to flight whereas tyramine primarily promotes walking.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Neurobiology, Free University Berlin, Berlin, Germany.
| | | | | |
Collapse
|