1
|
Warling A, Uchida R, Shin H, Dodelson C, Garcia ME, Shea-Shumsky NB, Svirsky S, Pothast M, Kelley H, Schumann CM, Brzezinski C, Bauman MD, Alexander A, McKee AC, Stein TD, Schall M, Jacobs B. Putative dendritic correlates of chronic traumatic encephalopathy: A preliminary quantitative Golgi exploration. J Comp Neurol 2020; 529:1308-1326. [PMID: 32869318 DOI: 10.1002/cne.25022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder that is associated with repetitive head impacts. Neuropathologically, it is defined by the presence of perivascular hyperphosphorylated tau aggregates in cortical tissue (McKee et al., 2016, Acta Neuropathologica, 131, 75-86). Although many pathological and assumed clinical correlates of CTE have been well characterized, its effects on cortical dendritic arbors are still unknown. Here, we quantified dendrites and dendritic spines of supragranular pyramidal neurons in tissue from human frontal and occipital lobes, in 11 cases with (Mage = 79 ± 7 years) and 5 cases without (Mage = 76 ± 11 years) CTE. Tissue was stained with a modified rapid Golgi technique. Dendritic systems of 20 neurons per region in each brain (N = 640 neurons) were quantified using computer-assisted morphometry. One key finding was that CTE neurons exhibited increased variability and distributional changes across six of the eight dendritic system measures, presumably due to ongoing degeneration and compensatory reorganization of dendritic systems. However, despite heightened variation among CTE neurons, CTE cases exhibited lower mean values than Control cases in seven of the eight dendritic system measures. These dendritic alterations may represent a new pathological marker of CTE, and further examination of dendritic changes could contribute to both mechanistic and functional understandings of the disease.
Collapse
Affiliation(s)
- Allysa Warling
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Riri Uchida
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Hyunsoo Shin
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Coby Dodelson
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Madeleine E Garcia
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - N Beckett Shea-Shumsky
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Sarah Svirsky
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Morgan Pothast
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hunter Kelley
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Sacramento, California, USA
| | - Christine Brzezinski
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Sacramento, California, USA
| | - Allyson Alexander
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ann C McKee
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA.,VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA.,VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| |
Collapse
|
2
|
Bird AD, Cuntz H. Dissecting Sholl Analysis into Its Functional Components. Cell Rep 2020; 27:3081-3096.e5. [PMID: 31167149 DOI: 10.1016/j.celrep.2019.04.097] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/20/2018] [Accepted: 04/19/2019] [Indexed: 12/31/2022] Open
Abstract
Sholl analysis has been an important technique in dendritic anatomy for more than 60 years. The Sholl intersection profile is obtained by counting the number of dendritic branches at a given distance from the soma and is a key measure of dendritic complexity; it has applications from evaluating the changes in structure induced by pathologies to estimating the expected number of anatomical synaptic contacts. We find that the Sholl intersection profiles of most neurons can be reproduced from three basic, functional measures: the domain spanned by the dendritic arbor, the total length of the dendrite, and the angular distribution of how far dendritic segments deviate from a direct path to the soma (i.e., the root angle distribution). The first two measures are determined by axon location and hence microcircuit structure; the third arises from optimal wiring and represents a branching statistic estimating the need for conduction speed in a neuron.
Collapse
Affiliation(s)
- Alex D Bird
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main 60438, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt-am-Main 60528, Germany.
| | - Hermann Cuntz
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main 60438, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt-am-Main 60528, Germany
| |
Collapse
|
3
|
Nguyen VT, Uchida R, Warling A, Sloan LJ, Saviano MS, Wicinski B, Hård T, Bertelsen MF, Stimpson CD, Bitterman K, Schall M, Hof PR, Sherwood CC, Manger PR, Spocter MA, Jacobs B. Comparative neocortical neuromorphology in felids: African lion, African leopard, and cheetah. J Comp Neurol 2020; 528:1392-1422. [DOI: 10.1002/cne.24823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Vivian T. Nguyen
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Riri Uchida
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Allysa Warling
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Lucy J. Sloan
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Mark S. Saviano
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | | | - Mads F. Bertelsen
- Center for Zoo and Wild Animal HealthCopenhagen Zoo Frederiksberg Denmark
| | - Cheryl D. Stimpson
- Department of Anthropology and Center for the Advanced Study of Human PaleobiologyThe George Washington University Washington District of Columbia
| | - Kathleen Bitterman
- School of Anatomical Sciences, Faculty of Health SciencesUniversity of the Witwatersrand Johannesburg South Africa
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human PaleobiologyThe George Washington University Washington District of Columbia
| | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health SciencesUniversity of the Witwatersrand Johannesburg South Africa
| | - Muhammad A. Spocter
- School of Anatomical Sciences, Faculty of Health SciencesUniversity of the Witwatersrand Johannesburg South Africa
- Department of AnatomyDes Moines University Des Moines Iowa
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| |
Collapse
|
4
|
Mittal P, Jaiswal SK, Vijay N, Saxena R, Sharma VK. Comparative analysis of corrected tiger genome provides clues to its neuronal evolution. Sci Rep 2019; 9:18459. [PMID: 31804567 PMCID: PMC6895189 DOI: 10.1038/s41598-019-54838-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
The availability of completed and draft genome assemblies of tiger, leopard, and other felids provides an opportunity to gain comparative insights on their unique evolutionary adaptations. However, genome-wide comparative analyses are susceptible to errors in genome sequences and thus require accurate genome assemblies for reliable evolutionary insights. In this study, while analyzing the tiger genome, we found almost one million erroneous substitutions in the coding and non-coding region of the genome affecting 4,472 genes, hence, biasing the current understanding of tiger evolution. Moreover, these errors produced several misleading observations in previous studies. Thus, to gain insights into the tiger evolution, we corrected the erroneous bases in the genome assembly and gene set of tiger using ‘SeqBug’ approach developed in this study. We sequenced the first Bengal tiger genome and transcriptome from India to validate these corrections. A comprehensive evolutionary analysis was performed using 10,920 orthologs from nine mammalian species including the corrected gene sets of tiger and leopard and using five different methods at three hierarchical levels, i.e. felids, Panthera, and tiger. The unique genetic changes in tiger revealed that the genes showing signatures of adaptation in tiger were enriched in development and neuronal functioning. Specifically, the genes belonging to the Notch signalling pathway, which is among the most conserved pathways involved in embryonic and neuronal development, were found to have significantly diverged in tiger in comparison to the other mammals. Our findings suggest the role of adaptive evolution in neuronal functions and development processes, which correlates well with the presence of exceptional traits such as sensory perception, strong neuro-muscular coordination, and hypercarnivorous behaviour in tiger.
Collapse
Affiliation(s)
- Parul Mittal
- Metaomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shubham K Jaiswal
- Metaomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Rituja Saxena
- Metaomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vineet K Sharma
- Metaomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|