1
|
Purkart L, Sigl-Glöckner J, Brecht M. Constant innervation despite pubertal growth of the mouse penis. J Comp Neurol 2020; 528:2269-2279. [PMID: 32090331 DOI: 10.1002/cne.24892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/26/2022]
Abstract
The sexual characteristics of the vertebrate body change under the control of sex hormones. In mammals, genitals undergo major changes in puberty. While such bodily changes have been well documented, the associated changes in the nervous system are poorly understood. To address this issue, we studied the growth and innervation of the mouse penis throughout puberty. To this end, we measured length and thickness of the mouse penis in prepubertal (3-4 week old) and adult (8-10 week old) mice and performed fiber counts of the dorsal penile nerve. We obtained such counts with confocal imaging of proximal sections of the mouse penis after paraffin embedding and antibody staining against Protein-Gene-Product-9.5 or Neurofilament-H in combination with antigen retrieval procedures. We find that the mouse penis grows roughly 1.4 times in both thickness and length. Fiber counts in the dorsal penile nerve were not different in prepubertal (1,620 ± 165 fibers per penis) and adult (1,572 ± 383 fibers per penis) mice, however. Antibody staining along with myelin staining by Luxol-Fast-Blue suggested about 57% of penile nerve fibers were myelinated. Quantification of the area of mouse somatosensory penis cortex allowed us to compare cortical magnification of the penile cortex and the whisker-barrel-cortex systems. This comparison suggested that 2 to 4 times less cortical area is devoted to a penile-nerve-fiber than to a whisker-nerve-fiber. The constant innervation of mouse penis through puberty suggests that the pubertal increase of cortical magnification of the penis is not simply a reflection of peripheral change.
Collapse
Affiliation(s)
- Leopold Purkart
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johanna Sigl-Glöckner
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Abstract
The cortical representation of male and female genitals, unlike that of the rest of the body, undergoes late expansion during puberty and is modulated by sexual experience. Using chronic imaging, a recent study has shed light on the cellular changes that accompany the sex-hormone- and experience-dependent expansion of the genital cortex.
Collapse
Affiliation(s)
- Susana Q Lima
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
3
|
Sigl-Glöckner J, Maier E, Takahashi N, Sachdev R, Larkum M, Brecht M. Effects of Sexual Experience and Puberty on Mouse Genital Cortex revealed by Chronic Imaging. Curr Biol 2019; 29:3588-3599.e4. [PMID: 31630949 DOI: 10.1016/j.cub.2019.08.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The topographic map in layer 4 of somatosensory cortex is usually specified early postnatally and stable thereafter. Genital cortex, however, undergoes a sex-hormone- and sexual-touch-dependent pubertal expansion. Here, we image pubertal development of genital cortex in Scnn1a-Tg3-Cre mice, where transgene expression has been shown to be restricted to layer 4 neurons with primary sensory cortex identity. Interestingly, during puberty, the number of Scnn1a+ neurons roughly doubled within genital cortex. The increase of Scnn1a+ neurons was gradual and rapidly advanced by initial sexual experience. Neurons that gained Scnn1a expression comprised stellate and pyramidal neurons in layer 4. Unlike during neonatal development, pyramids did not retract their apical dendrites during puberty. Calcium imaging revealed stronger genital-touch responses in Scnn1a+ neurons in males versus females and a developmental increase in responsiveness in females. The first sexual interaction is a unique physical experience that often creates long-lasting memories. We suggest such experience uniquely alters somatosensory body maps.
Collapse
Affiliation(s)
- Johanna Sigl-Glöckner
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Eduard Maier
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Naoya Takahashi
- Institute for Biology, Humboldt-Universität zu Berlin, Charitéplatz 1, 10437 Berlin, Germany
| | - Robert Sachdev
- Institute for Biology, Humboldt-Universität zu Berlin, Charitéplatz 1, 10437 Berlin, Germany
| | - Matthew Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Charitéplatz 1, 10437 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany.
| |
Collapse
|
4
|
Ebbesen CL, Bobrov E, Rao RP, Brecht M. Highly structured, partner-sex- and subject-sex-dependent cortical responses during social facial touch. Nat Commun 2019; 10:4634. [PMID: 31604919 PMCID: PMC6789031 DOI: 10.1038/s41467-019-12511-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Touch is a fundamental aspect of social, parental and sexual behavior. In contrast to our detailed knowledge about cortical processing of non-social touch, we still know little about how social touch impacts cortical circuits. We investigated neural activity across five frontal, motor and sensory cortical areas in rats engaging in naturalistic social facial touch. Information about social touch and the sex of the interaction partner (a biologically significant feature) is a major determinant of cortical activity. 25.3% of units were modulated during social touch and 8.3% of units displayed ‘sex-touch’ responses (responded differently, depending on the sex of the interaction partner). Single-unit responses were part of a structured, partner-sex- and, in some cases, subject-sex-dependent population response. Spiking neural network simulations indicate that a change in inhibitory drive might underlie these population dynamics. Our observations suggest that socio-sexual characteristics of touch (subject and partner sex) widely modulate cortical activity and need to be investigated with cellular resolution. Touch is an important sensory modality during social encounters. Here the authors report that during naturalistic social encounters in rats, the cortical activity in widespread areas at the level of single neurons is modulated by sociosexual characteristics such as the subject and partner sex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Neuroscience Institute, New York University, New York, NY, 10016, USA. .,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| | - Evgeny Bobrov
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Rajnish P Rao
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
5
|
Lenschow C, Brecht M. Physiological and Anatomical Outputs of Rat Genital Cortex. Cereb Cortex 2019; 28:1472-1486. [PMID: 29373631 PMCID: PMC6093453 DOI: 10.1093/cercor/bhx359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 01/02/2023] Open
Abstract
Rat somatosensory genital cortex contains a large sexually monomorphic representation of the penis in males and the clitoris in females. Genital cortex microstimulation-evoked movements of legs, trunk and genitals, which showed sex-specific differences related to mating behaviors and included thrusting in males and lordosis-like movements in females. Erections/tumescence of penis or clitoris could not be evoked, however. Anterograde tracer injections into penis/clitoris cortex revealed eleven corticocortical and 10 subcortical projection targets, which were qualitatively similar in both sexes. Corticocortical genital-cortex-projections innervated about 3% of the cortical surface and most were analog to other somatosensory projections targeting motor cortex, secondary somatosensory cortex, parietal cortex and perirhinal cortex. Corticocortical projections that differed from other parts of somatosensory cortex targeted male scrotum cortex, female vulva cortex, the somatosensory–ear–auditory-cortex-region and the caudal parietal area. Aligning cytoarchitectonic borders with motor topography, sensory genital responses and corticocortical projections identified a candidate region for genital motor cortex. Most subcortical genital-cortex-projections were analog to other thalamic, tectal or pontine projections of somatosensory cortex. Genital-cortex-specific subcortical projections targeted amygdala and nucleus submedius and accumbens. Microstimulation-effects and projections support a sexual function of genital cortex and suggest that genital cortex is a major hub of sexual sensorimotor processing in rodents.
Collapse
Affiliation(s)
- Constanze Lenschow
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.,Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
6
|
Socio-sexual processing in cortical circuits. Curr Opin Neurobiol 2018; 52:1-9. [PMID: 29694921 DOI: 10.1016/j.conb.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 04/07/2018] [Indexed: 12/29/2022]
Abstract
How does social and sexual information processing map onto cortical circuits? Addressing this question has been difficult, because of a lack of circuit-oriented social neuroscience and an absence of measurements from interacting brains. Recent work showed social information is already differentially processed in the primary sensory cortices. Converging evidence suggests that prefrontal areas contribute to social interaction processing and determining social hierarchies. In social interactions, we identify gender in split seconds, but after centuries of anatomy we are still unable to distinguish male and female cortices. Novel data reinforce the idea of a bisexual layout of cortical anatomy. Physiological analysis, however, provided evidence for sex differences in cortical processing. Unlike other cortical circuits, sexual processing circuits undergo major rewiring and expansion during puberty and show lasting damage from childhood abuse.
Collapse
|
7
|
Lauer SM, Schneeweiß U, Brecht M, Ray S. Visualization of Cortical Modules in Flattened Mammalian Cortices. J Vis Exp 2018. [PMID: 29443106 DOI: 10.3791/56992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cortex of mammalian brains is parcellated into distinct substructures or modules. Cortical modules typically lie parallel to the cortical sheet, and can be delineated by certain histochemical and immunohistochemical methods. In this study, we highlight a method to isolate the cortex from mammalian brains and flatten them to obtain sections parallel to the cortical sheet. We further highlight selected histochemical and immunohistochemical methods to process these flattened tangential sections to visualize cortical modules. In the somatosensory cortex of various mammals, we perform cytochrome oxidase histochemistry to reveal body maps or cortical modules representing different parts of the body of the animal. In the medial entorhinal cortex, an area where grid cells are generated, we utilize immunohistochemical methods to highlight modules of genetically determined neurons which are arranged in a grid-pattern in the cortical sheet across several species. Overall, we provide a framework to isolate and prepare layer-wise flattened cortical sections, and visualize cortical modules using histochemical and immunohistochemical methods in a wide variety of mammalian brains.
Collapse
Affiliation(s)
- Simon M Lauer
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin
| | - Undine Schneeweiß
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin; NeuroCure Cluster of Excellence; German Center for Neurodegenerative Diseases
| | - Saikat Ray
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin;
| |
Collapse
|
8
|
Lenschow C, Sigl-Glöckner J, Brecht M. Development of rat female genital cortex and control of female puberty by sexual touch. PLoS Biol 2017; 15:e2001283. [PMID: 28934203 PMCID: PMC5608169 DOI: 10.1371/journal.pbio.2001283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 08/17/2017] [Indexed: 12/05/2022] Open
Abstract
Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch. We recently identified the somatosensory representation of rat genitals; remarkably, this cortical region—genital cortex—is sexually monomorphic, despite the marked sexual dimorphism of external genitals in rats. Most intriguing was the observation that genital cortex doubles in size during puberty. In order to shed light on this unusual expansion, we studied genital cortex development and sexual maturation in the female rat. We first showed that sex hormones are likely to cause the pubertal expansion of genital cortex. Next, we examined whether sexual experience affects the development of female genital cortex. Raising females together with adult males advanced genital cortex expansion, but cohousing with adult females or exposure to nontactile male cues was not sufficient to drive genital cortex growth. Surprisingly, artificial genital touch led to an early onset of female puberty and growth of genital cortex. In line with this finding, we find that if genital cortex activity is blocked, the advancing effects of adult males on puberty and genital cortex growth are inhibited. Together, our results point to an important role of genital cortex in the puberty-promoting effects of sexual touch.
Collapse
Affiliation(s)
- Constanze Lenschow
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (CL); (MB)
| | - Johanna Sigl-Glöckner
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (CL); (MB)
| |
Collapse
|
9
|
Lauer SM, Lenschow C, Brecht M. Sexually selected size differences and conserved sexual monomorphism of genital cortex. J Comp Neurol 2017; 525:2706-2718. [PMID: 28472863 PMCID: PMC6585678 DOI: 10.1002/cne.24237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/25/2022]
Abstract
The mammalian somatosensory cortex shows marked species‐specific differences. How evolution in general and sexual selection in particular shape the somatosensory cortical body representation has not been delineated, however. Here we address this issue by a comparative analysis of genital cortex. Genitals are unique body parts in that they show sexual dimorphism, major changes in puberty and typically more pronounced species differences than other body parts (Hosken & Stockley, 2004). To study the evolution of genital cortex we flattened cortical hemispheres and assembled 104 complete body maps, revealed by cytochrome‐oxidase activity in layer 4 of 8 rodent and 1 lagomorph species. In two species, we also performed antibody stainings against vesicular glutamate transporter‐2, which suggested that cytochrome‐oxidase maps closely mirror thalamic innervation. We consistently observed a protrusion between hindlimb and forelimb representation, which in rats (Lenschow et al., 2016) corresponds to the penis representation in males and the clitoris representation in females. Consistent with the idea that this protrusion corresponds to genital cortex, we observed a size increase of this protrusion during puberty. Species differed in external genital sexual dimorphism, but we observed a sexual monomorphism of the putative genital protrusion in all species, similar to previous observations in rats. The relative size of the putative genital protrusion varied more than 3‐fold between species ranging from 0.5% of somatosensory cortex area in chipmunks to 1.7% in rats. This relative size of the genital protrusion co‐varied with relative testicle size, an indicator of sperm competition and sexual selection.
Collapse
Affiliation(s)
- Simon M Lauer
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 6, Berlin, Germany
| | - Constanze Lenschow
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 6, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 6, Berlin, Germany.,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|