1
|
Wang J, Lv F, Yin W, Gao Z, Liu H, Wang Z, Sun J. The organum vasculosum of the lamina terminalis and subfornical organ: regulation of thirst. Front Neurosci 2023; 17:1223836. [PMID: 37732311 PMCID: PMC10507174 DOI: 10.3389/fnins.2023.1223836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Thirst and water intake are regulated by the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO), located around the anteroventral third ventricle, which plays a critical role in sensing dynamic changes in sodium and water balance in body fluids. Meanwhile, neural circuits involved in thirst regulation and intracellular mechanisms underlying the osmosensitive function of OVLT and SFO are reviewed. Having specific Nax channels in the glial cells and other channels (such as TRPV1 and TRPV4), the OVLT and SFO detect the increased Na+ concentration or hyperosmolality to orchestrate osmotic stimuli to the insular and cingulate cortex to evoke thirst. Meanwhile, the osmotic stimuli are relayed to the supraoptic nucleus (SON) and paraventricular nucleus of the hypothalamus (PVN) via direct neural projections or the median preoptic nucleus (MnPO) to promote the secretion of vasopressin which plays a vital role in the regulation of body fluid homeostasis. Importantly, the vital role of OVLT in sleep-arousal regulation is discussed, where vasopressin is proposed as the mediator in the regulation when OVLT senses osmotic stimuli.
Collapse
Affiliation(s)
- Jiaxu Wang
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenglin Lv
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Yin
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhanpeng Gao
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongyu Liu
- Institute of Sport and Exercise Medicine, North University of China, Taiyuan, China
| | - Zhen Wang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Ujvári B, Pytel B, Márton Z, Bognár M, Kovács LÁ, Farkas J, Gaszner T, Berta G, Kecskés A, Kormos V, Farkas B, Füredi N, Gaszner B. Neurodegeneration in the centrally-projecting Edinger-Westphal nucleus contributes to the non-motor symptoms of Parkinson's disease in the rat. J Neuroinflammation 2022; 19:31. [PMID: 35109869 PMCID: PMC8809039 DOI: 10.1186/s12974-022-02399-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The neuropathological background of major depression and anxiety as non-motor symptoms of Parkinson's disease is much less understood than classical motor symptoms. Although, neurodegeneration of the Edinger-Westphal nucleus in human Parkinson's disease is a known phenomenon, its possible significance in mood status has never been elucidated. In this work we aimed at investigating whether neuron loss and alpha-synuclein accumulation in the urocortin 1 containing (UCN1) cells of the centrally-projecting Edinger-Westphal (EWcp) nucleus is associated with anxiety and depression-like state in the rat. METHODS Systemic chronic rotenone administration as well as targeted leptin-saporin-induced lesions of EWcp/UCN1 neurons were conducted. Rotarod, open field and sucrose preference tests were performed to assess motor performance and mood status. Multiple immunofluorescence combined with RNAscope were used to reveal the functional-morphological changes. Two-sample Student's t test, Spearman's rank correlation analysis and Mann-Whitney U tests were used for statistics. RESULTS In the rotenone model, besides motor deficit, an anxious and depression-like phenotype was detected. Well-comparable neuron loss, cytoplasmic alpha-synuclein accumulation as well as astro- and microglial activation were observed both in the substantia nigra pars compacta and EWcp. Occasionally, UCN1-immunoreactive neuronal debris was observed in phagocytotic microglia. UCN1 peptide content of viable EWcp cells correlated with dopaminergic substantia nigra cell count. Importantly, other mood status-related dopaminergic (ventral tegmental area), serotonergic (dorsal and median raphe) and noradrenergic (locus ceruleus and A5 area) brainstem centers did not show remarkable morphological changes. Targeted partial selective EWcp/UCN1 neuron ablation induced similar mood status without motor symptoms. CONCLUSIONS Our findings collectively suggest that neurodegeneration of urocortinergic EWcp contributes to the mood-related non-motor symptoms in toxic models of Parkinson's disease in the rat.
Collapse
Affiliation(s)
- Balázs Ujvári
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary.,Centre for Neuroscience, University of Pécs, 7624, Pecs, Hungary
| | - Bence Pytel
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary
| | - Zsombor Márton
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary
| | - Máté Bognár
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary.,Centre for Neuroscience, University of Pécs, 7624, Pecs, Hungary
| | - József Farkas
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary.,Centre for Neuroscience, University of Pécs, 7624, Pecs, Hungary
| | - Tamás Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary.,Centre for Neuroscience, University of Pécs, 7624, Pecs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, 7624, Pecs, Hungary
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, 7624, Pecs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, 7624, Pecs, Hungary
| | - Boglárka Farkas
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary.,Centre for Neuroscience, University of Pécs, 7624, Pecs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary. .,Centre for Neuroscience, University of Pécs, 7624, Pecs, Hungary.
| |
Collapse
|