1
|
Polat H, Grande G, Aurangzeb Z, Zhang H, Daghfous G, Dubuc R, Zielinski B. The distribution and chemosensory responses of pharyngeal taste buds in the sea lamprey Petromyzon marinus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:1-17. [PMID: 39078515 PMCID: PMC11846773 DOI: 10.1007/s00359-024-01708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
Little is known about the chemosensory system of gustation in sea lampreys, basal jawless vertebrates that feed voraciously on live prey. The objective of this study was to investigate taste bud distribution and chemosensory responses along the length of the pharynx in the sea lamprey. Scanning electron microscopy and immunocytochemistry revealed taste buds and associated axons at all six lateral pharyngeal locations between the seven pairs of internal gill pores. The most rostral pharyngeal region contained more and larger taste buds than the most caudal region. Taste receptor cell responses were recorded to sweet, bitter, amino acids and the bile acid taurocholic acid, as well as to adenosine triphosphate. Similar chemosensory responses were observed at all six pharyngeal locations with taste buds. Overall, this study shows prominent taste buds and taste receptor cell activity in the seven pharyngeal regions of the sea lamprey.
Collapse
Affiliation(s)
- Hasan Polat
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Gianfranco Grande
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Zeenat Aurangzeb
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Huiming Zhang
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Gheylen Daghfous
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Barbara Zielinski
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
2
|
Alesci A, Pergolizzi S, Mokhtar DM, Fumia A, Aragona M, Lombardo GP, Messina E, D'Angelo R, Lo Cascio P, Sayed RKA, Albano M, Capillo G, Lauriano ER. Morpho-structural adaptations of the integument in different aquatic organisms. Acta Histochem 2023; 125:152031. [PMID: 37075648 DOI: 10.1016/j.acthis.2023.152031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
The integument acts as a barrier to protect the body from harmful pathogenic infectious agents, parasites, UV rays, trauma, and germs. The integument of invertebrates and vertebrates are structurally different: while invertebrates usually have a simple monolayer epidermis frequently covered by mucus, cuticles, or mineralized structures, vertebrates possess a multilayered epidermis with several specialized cells. This study aims to describe by morphological, histological, and immunohistochemical analyses, the morpho-structural adaptations throughout evolution of the integument of gastropod Aplysia depilans (Gmelin, 1791), ascidian Styela plicata (Lesuer, 1823), myxine hagfish Eptatretus cirrhatus (Forster, 1801) and teleost Heteropneustes fossilis (Bloch, 1794) for the first time, with special reference to sensory epidermal cells. Different types of cells could be identified that varied according to the species; including mucous cells, serous glandular cells, clavate cells, club cells, thread cells, and support cells. In all integuments of the specimens analyzed, sensory solitary cells were identified in the epidermis, immunoreactive to serotonin and calbindin. Our study provided an essential comparison of integuments, adding new information about sensory epidermal cells phylogenetic conservation and on the structural changes that invertebrates and vertebrates have undergone during evolution.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124 Messina, Italy.
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
3
|
Fritzsch B, Elliott KL, Yamoah EN. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front Neural Circuits 2022; 16:913480. [PMID: 36213204 PMCID: PMC9539932 DOI: 10.3389/fncir.2022.913480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, The University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch,
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
4
|
Wagner CM, Bals JD, Hanson ME, Scott AM. Attenuation and recovery of an avoidance response to a chemical antipredator cue in an invasive fish: implications for use as a repellent in conservation. CONSERVATION PHYSIOLOGY 2022; 10:coac019. [PMID: 35492423 PMCID: PMC9041352 DOI: 10.1093/conphys/coac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The detection of predation risk without direct engagement with a predator is an important driver of prey movement strategies. Consequently, the application of alarm cues may prove an effective tool in guiding the movements of fishes targeted for control or conservation. However, failure to contemplate the sensory, physiological and cognitive outcomes of repeated or persistent exposure to the cue will likely lead to poor performance of management practices. Using a series of behavioural tests and physiological recordings from the olfactory organ, we examined the timing of onset and recovery of the alarm response in sea lamprey (Petromyzon marinus L.) when exposed continuously or sporadically to its alarm cue. In the laboratory, sea lamprey exhibited short-term, reversible attenuation of the alarm response over 2-4 h with continuous exposure. The alarm response spontaneously recovered after 30-60 min of removal from the cue. In long-duration free-swimming tests, where the animals were allowed to move into and out of the odour plume volitionally, repeated but sporadic encounter with the alarm cue over 5 h did not alter the alarm response. Electro-olfactogram recordings from the main olfactory epithelium indicated that olfactory sensory neurons quickly adapt to alarm cue and recovered within 15 min. Our findings strongly implicate habituation as the mechanism that induces reduction in the alarm response and provide insight into the design of effective management practices that seek to use fish alarm cues as repellents.
Collapse
Affiliation(s)
- C Michael Wagner
- Corresponding author. Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| | | | | | - Anne M Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
6
|
Sobrido-Cameán D, Anadón R, Barreiro-Iglesias A. Expression of Urocortin 3 mRNA in the Central Nervous System of the Sea Lamprey Petromyzon marinus. BIOLOGY 2021; 10:biology10100978. [PMID: 34681077 PMCID: PMC8533218 DOI: 10.3390/biology10100978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023]
Abstract
In this study, we analyzed the organization of urocortin 3 (Ucn3)-expressing neuronal populations in the brain of the adult sea lamprey by means of in situ hybridization. We also studied the brain of larval sea lampreys to establish whether this prosocial neuropeptide is expressed differentially in two widely different phases of the sea lamprey life cycle. In adult sea lampreys, Ucn3 transcript expression was observed in neurons of the striatum, prethalamus, nucleus of the medial longitudinal fascicle, torus semicircularis, isthmic reticular formation, interpeduncular nucleus, posterior rhombencephalic reticular formation and nucleus of the solitary tract. Interestingly, in larval sea lampreys, only three regions showed Ucn3 expression, namely the prethalamus, the nucleus of the medial longitudinal fascicle and the posterior rhombencephalic reticular formation. A comparison with distributions of Ucn3 in other vertebrates revealed poor conservation of Ucn3 expression during vertebrate evolution. The large qualitative differences in Ucn3 expression observed between larval and adult phases suggest that the maturation of neuroregulatory circuits in the striatum, torus semicircularis and hindbrain chemosensory systems is closely related to profound life-style changes occurring after the transformation from larval to adult life.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Ramón Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
- Correspondence:
| |
Collapse
|
7
|
Suntres TE, Daghfous G, Ananvoranich S, Dubuc R, Zielinski BS. Sensory cutaneous papillae in the sea lamprey (
Petromyzon marinus
L.): II. Ontogeny and immunocytochemical characterization of solitary chemosensory cells. J Comp Neurol 2019; 528:865-878. [DOI: 10.1002/cne.24794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Tina E. Suntres
- Department of Biological Sciences University of Windsor Windsor Ontario Canada
| | - Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Université de Montréal Montréal Quebec Canada
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité Physique Université du Québec à Montréal Montréal Quebec Canada
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry University of Windsor Windsor Ontario Canada
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Université de Montréal Montréal Quebec Canada
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité Physique Université du Québec à Montréal Montréal Quebec Canada
| | - Barbara S. Zielinski
- Department of Biological Sciences University of Windsor Windsor Ontario Canada
- Great Lakes Institute for Environmental Research University of Windsor Windsor Ontario Canada
| |
Collapse
|