1
|
Loria SF, Ehrenthal VL, Esposito LA. Revisiting the scorpion central nervous system using microCT. Sci Rep 2024; 14:27961. [PMID: 39543179 PMCID: PMC11564975 DOI: 10.1038/s41598-024-76917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
The central nervous system (CNS) of Chelicerata has remained conserved since the Cambrian, yet few studies have examined its variability within chelicerate orders including Scorpiones. The scorpion CNS comprises the prosomal ganglion and opisthosomal ventral nerve cord. We visualize the scorpion CNS with microCT, explore morphological variation across taxa, compare the scorpion CNS to other arachnids, and create a terminology glossary and literature review to assist future studies. Six scorpion species were microCT scanned. Scan quality varied and most structures in the prosomal ganglion could only be observed in Paruroctonus becki (Vaejovidae). Major nerves and the first opisthosomal ganglion were visible in nearly all taxa. We present the most detailed 3D-rendering of the scorpion prosomal ganglion to date. Our results corroborate existing research and find the scorpion CNS to be conserved. Nearly all structures reported previously in the prosomal ganglion were located in similar positions in P. becki, and nerve morphology was conserved across examined families. Despite similarities, we report differences from the literature, observe taxonomic variation in prosomal ganglion shape, and confirm positional variation for the first opisthosomal ganglion. This study serves as a starting point for microCT analysis of the scorpion CNS, and future work should include more distantly related, size variable taxa to better elucidate these findings.
Collapse
Affiliation(s)
- Stephanie F Loria
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA.
- Museum of Nature Hamburg-Zoology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany.
| | - Valentin L Ehrenthal
- Museum of Nature Hamburg-Zoology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Lauren A Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
2
|
Coppola VJ, Caram HE, Robeson C, Beeler SM, Hebets EA, Wiegmann DD, Bingman VP. Investigating boundary-geometry use by whip spiders (Phrynus marginemaculatus) during goal-directed navigation. Learn Behav 2024; 52:170-178. [PMID: 37620643 DOI: 10.3758/s13420-023-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Previous studies have shown that whip spiders (Amblypygi) can use a variety of cues to navigate to and recognize a home refuge. The current study aimed to determine whether whip spiders were capable of using the boundary geometry of an experimental space (geometric information) to guide goal-directed navigation and to investigate any preferential use of geometric or feature (visual) information. Animals were first trained to find a goal location situated in one corner of a rectangular arena (geometric information) fronting a dark-green-colored wall, which created a brightness contrast with the other three white walls (feature information). Various probe trials were then implemented to determine cue use. It was found that animals were capable of directing their choice behavior towards geometrically correct corners at a rate significantly higher than chance, even when the feature cue was removed. By contrast, choice behavior dropped to random chance when geometric information was removed (test in a square arena) and only feature information remained. Choice behavior was also reduced to chance when geometric and feature information were set in conflict (by moving the feature cue to one of the longer walls in the rectangular arena). The data thus suggest that whip spiders are capable of using geometric information to guide goal-directed navigation and that geometric information is preferred over feature guidance, although a feature cue may set the context for activating geometry-guided navigation. Experimental design limitations and future directions are discussed.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA.
| | - Hannah E Caram
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Cecilia Robeson
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Sophia M Beeler
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
3
|
Ortega-Escobar J, Hebets EA, Bingman VP, Wiegmann DD, Gaffin DD. Comparative biology of spatial navigation in three arachnid orders (Amblypygi, Araneae, and Scorpiones). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01612-2. [PMID: 36781447 DOI: 10.1007/s00359-023-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
From both comparative biology and translational research perspectives, there is escalating interest in understanding how animals navigate their environments. Considerable work is being directed towards understanding the sensory transduction and neural processing of environmental stimuli that guide animals to, for example, food and shelter. While much has been learned about the spatial orientation behavior, sensory cues, and neurophysiology of champion navigators such as bees and ants, many other, often overlooked animal species possess extraordinary sensory and spatial capabilities that can broaden our understanding of the behavioral and neural mechanisms of animal navigation. For example, arachnids are predators that often return to retreats after hunting excursions. Many of these arachnid central-place foragers are large and highly conducive to scientific investigation. In this review we highlight research on three orders within the Class Arachnida: Amblypygi (whip spiders), Araneae (spiders), and Scorpiones (scorpions). For each, we describe (I) their natural history and spatial navigation, (II) how they sense the world, (III) what information they use to navigate, and (IV) how they process information for navigation. We discuss similarities and differences among the groups and highlight potential avenues for future research.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Verner P Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Douglas D Gaffin
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
4
|
Drozd D, Wolf H, Stemme T. Mechanosensory pathways of scorpion pecten hair sensillae-Adjustment of body height and pecten position. J Comp Neurol 2022; 530:2918-2937. [PMID: 35780514 DOI: 10.1002/cne.25384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Scorpions' sensory abilities are intriguing, especially the rather enigmatic ventral comb-like chemo- and mechanosensory organs, the so-called pectines. Attached ventrally to the second mesosomal segment just posterior to the coxae of the fourth walking leg pair, the pectines consist of the lamellae, the fulcra, and a variable number of pecten teeth. The latter contain the bimodal peg sensillae, used for probing the substrate with regard to chemo- and mechanosensory cues simultaneously. In addition, the lamellae, the fulcra and the pecten teeth are equipped with pecten hair sensillae (PHS) to gather mechanosensory information. Previously, we have analyzed the neuronal pathway associated with the peg sensillae unraveling their somatotopic projection pattern in dedicated pecten neuropils. Little is known, however, regarding the projections of PHS within the scorpion nervous system. Behavioral and electrophysiological assays showed involvement of PHS in reflexive responses but how the information is integrated remains unresolved. Here, we unravel the innervation pattern of the mechanosensory pecten hair afferents in Mesobuthus eupeus and Euscorpius italicus. By using immunofluorescent labeling and injection of Neurobiotin tracer, we identify extensive arborizations of afferents, including (i) ventral neuropils, (ii) somatotopically organized multisegmental sensory tracts, (iii) contralateral branches via commissures, and (iv) direct ipsilateral innervation of walking leg neuromeres 3 and 4. Our results suggest that PHS function as sensors to elicit reflexive adjustment of body height and obstacle avoidance, mediating accurate pecten teeth alignment to guarantee functionality of pectines, which are involved in fundamental capacities like mating or navigation.
Collapse
Affiliation(s)
- Denise Drozd
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Martin C, Jahn H, Klein M, Hammel JU, Stevenson PA, Homberg U, Mayer G. The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biol 2022; 20:26. [PMID: 35073910 PMCID: PMC9136957 DOI: 10.1186/s12915-021-01196-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| | - Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Mercedes Klein
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behaviour, Institute of Biology, University of Leipzig, 04103, Leipzig, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| |
Collapse
|
6
|
Lehmann KDS, Shogren FG, Fallick M, Watts JC, Schoenberg D, Wiegmann DD, Bingman VP, Hebets EA. Exploring Higher-Order Conceptual Learning in an Arthropod with a Large Multisensory Processing Center. INSECTS 2022; 13:insects13010081. [PMID: 35055924 PMCID: PMC8780652 DOI: 10.3390/insects13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary It is difficult to measure animal intelligence because the definition of ‘intelligence’ varies, and many animals are good at specific tasks used to measure intelligence or cognition. To address this, scientists often look for evidence of common cognitive abilities. One such ability, the ability to learn concepts, is thought to be rare in animals, especially invertebrates. Concepts include the ideas of ‘same’ and ‘different’. These concepts can be applied to anything in the environment while also being independent of those objects and can help animals understand and survive their environment. Amblypygids, a relative of spiders, live in tropical and subtropical areas, are very good learners, and have a large, complex brain region known to process information from multiple senses. We tested whether amblypygids could learn the concept of ‘same’ by training them to move toward a stimulus that matched with an initial stimulus. We also trained some individuals to learn the concept ‘different’ by training them to move toward a non-matching stimulus. When we used new stimuli, the amblypygids did not move toward the correct stimulus significantly more often than the incorrect stimulus, suggesting either they are unable to learn these higher-order concepts or our experimental design failed to elicit that ability. Abstract Comparative cognition aims to understand the evolutionary history and current function of cognitive abilities in a variety of species with diverse natural histories. One characteristic often attributed to higher cognitive abilities is higher-order conceptual learning, such as the ability to learn concepts independent of stimuli—e.g., ‘same’ or ‘different’. Conceptual learning has been documented in honeybees and a number of vertebrates. Amblypygids, nocturnal enigmatic arachnids, are good candidates for higher-order learning because they are excellent associational learners, exceptional navigators, and they have large, highly folded mushroom bodies, which are brain regions known to be involved in learning and memory in insects. In Experiment 1, we investigate if the amblypygid Phrynus marginimaculatus can learn the concept of same with a delayed odor matching task. In Experiment 2, we test if Paraphrynus laevifrons can learn same/different with delayed tactile matching and nonmatching tasks before testing if they can transfer this learning to a novel cross-modal odor stimulus. Our data provide no evidence of conceptual learning in amblypygids, but more solid conclusions will require the use of alternative experimental designs to ensure our negative results are not simply a consequence of the designs we employed.
Collapse
Affiliation(s)
- Kenna D. S. Lehmann
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Fiona G. Shogren
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Mariah Fallick
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - James Colton Watts
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel Schoenberg
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Daniel D. Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Verner P. Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA;
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Eileen A. Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
- Correspondence:
| |
Collapse
|
7
|
Anatomy of the Nervous System in Chelifer cancroides (Arachnida: Pseudoscorpiones) with a Distinct Sensory Pathway Associated with the Pedipalps. INSECTS 2021; 13:insects13010025. [PMID: 35055868 PMCID: PMC8780800 DOI: 10.3390/insects13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Most arthropods (uniting animals such as the chelicerates, e.g., spiders and their kin, as well as millipedes, centipedes, crustaceans, and insects) have distinct sensory appendages at the second head segment, the so-called antennae. The Arachnida (e.g., spiders and scorpions) do not possess antennae, but have evolved highly specialized sensory organs on different body regions. However, very limited information is available concerning pseudoscorpions (false scorpions). These animals do not seem to possess such specialized structures, but show dominant, multifunctional appendages prior to the first walking leg, called pedipalps. Here, we investigate the neuronal pathway of these structures as well as general aspects of the nervous system. We describe new details of typical arthropod brain compartments, such as the arcuate body and a comparatively small mushroom body. Neurons associated with the pedipalps terminate in two regions in the central nervous system of characteristic arrangement: a glomerular and a layered center, which we interpret as a chemo- and a mechanosensory center, respectively. The centers, which fulfill the same function in other animals, show a similar arrangement. These similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites. Identifying these similarities helps to understand the general functionality of sensory systems, not only within arthropods. Abstract Many arachnid taxa have evolved unique, highly specialized sensory structures such as antenniform legs in Amblypygi (whip spiders), for instance, or mesosomal pectines in scorpions. Knowledge of the neuroanatomy as well as functional aspects of these sensory organs is rather scarce, especially in comparison to other arthropod clades. In pseudoscorpions, no special sensory structures have been discovered so far. Nevertheless, these animals possess dominant, multifunctional pedipalps, which are good candidates for being the primary sensory appendages. However, only little is known about the anatomy of the nervous system and the projection pattern of pedipalpal afferents in this taxon. By using immunofluorescent labeling of neuronal structures as well as lipophilic dye labeling of pedipalpal pathways, we identified the arcuate body, as well as a comparatively small mushroom body, the latter showing some similarities to that of Solifugae (sun spiders and camel spiders). Furthermore, afferents from the pedipalps terminate in a glomerular and a layered neuropil. Due to the innervation pattern and structural appearance, we conclude that these neuropils are the first integration centers of the chemosensory and mechanosensory afferents. Within Arthropoda, but also other invertebrates or even vertebrates, sensory structures show rather similar neuronal arrangement. Thus, these similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites of the respective modality.
Collapse
|
8
|
Flanigan KAS, Wiegmann DD, Casto P, Coppola VJ, Flesher NR, Hebets EA, Bingman VP. Visual control of refuge recognition in the whip spider Phrynus marginemaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:729-737. [PMID: 34591165 DOI: 10.1007/s00359-021-01509-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023]
Abstract
Amblypygids, or whip spiders, are nocturnally active arachnids which live in structurally complex environments. Whip spiders are excellent navigators that can re-locate a home refuge without relying on visual input. Therefore, an open question is whether visual input can control any aspect of whip spider spatial behavior. In the current study, Phrynus marginemaculatus were trained to locate an escape refuge by discriminating between differently oriented black and white stripes placed either on the walls of a testing arena (frontal discrimination) or on the ceiling of the same testing arena (overhead discrimination). Regardless of the placement of the visual stimuli, the whip spiders were successful in learning the location of the escape refuge. In a follow-up study of the overhead discrimination, occluding the median eyes was found to disrupt the ability of the whip spiders to locate the shelter. The data support the conclusion that whip spiders can rely on vision to learn and recognize an escape shelter. We suggest that visual inputs to the brain's mushroom bodies enable this ability.
Collapse
Affiliation(s)
- Kaylyn A S Flanigan
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA. .,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | - Daniel D Wiegmann
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Patrick Casto
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Natasha R Flesher
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
9
|
Flanigan KAS, Wiegmann DD, Hebets EA, Bingman VP. Multisensory integration supports configural learning of a home refuge in the whip spider Phrynus marginemaculatus. J Exp Biol 2021; 224:jeb.238444. [PMID: 33436366 DOI: 10.1242/jeb.238444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Whip spiders (Amblypygi) reside in structurally complex habitats and are nocturnally active yet display notable navigational abilities. From the theory that uncertainty in sensory inputs should promote multisensory representations to guide behavior, we hypothesized that their navigation is supported by a multisensory and perhaps configural representation of navigational inputs, an ability documented in a few insects and never reported in arachnids. We trained Phrynus marginemaculatus to recognize a home shelter characterized by both discriminative olfactory and tactile stimuli. In tests, subjects readily discriminated between shelters based on the paired stimuli. However, subjects failed to recognize the shelter in tests with either of the component stimuli alone. This result is consistent with the hypothesis that the terminal phase of their navigational behavior, shelter recognition, can be supported by the integration of multisensory stimuli as an enduring, configural representation. We hypothesize that multisensory learning occurs in the whip spiders' extraordinarily large mushroom bodies, which may functionally resemble the hippocampus of vertebrates.
Collapse
Affiliation(s)
- Kaylyn A S Flanigan
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA .,Department of Psychology, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| |
Collapse
|