1
|
Vitullo P, Cicci L, Possenti L, Coclite A, Costantino ML, Zunino P. Sensitivity analysis of a multi-physics model for the vascular microenvironment. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3752. [PMID: 37455669 DOI: 10.1002/cnm.3752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
The vascular microenvironment is the scale at which microvascular transport, interstitial tissue properties and cell metabolism interact. The vascular microenvironment has been widely studied by means of quantitative approaches, including multi-physics mathematical models as it is a central system for the pathophysiology of many diseases, such as cancer. The microvascular architecture is a key factor for fluid balance and mass transfer in the vascular microenvironment, together with the physical parameters characterizing the vascular wall and the interstitial tissue. The scientific literature of this field has witnessed a long debate about which factor of this multifaceted system is the most relevant. The purpose of this work is to combine the interpretative power of an advanced multi-physics model of the vascular microenvironment with state of the art and robust sensitivity analysis methods, in order to determine the factors that most significantly impact quantities of interest, related in particular to cancer treatment. We are particularly interested in comparing the factors related to the microvascular architecture with the ones affecting the physics of microvascular transport. Ultimately, this work will provide further insight into how the vascular microenvironment affects cancer therapies, such as chemotherapy, radiotherapy or immunotherapy.
Collapse
Affiliation(s)
| | - Ludovica Cicci
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
- School of Biomedical Engineering & Imaging Sciences, King's College, London, UK
| | - Luca Possenti
- Data Science Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alessandro Coclite
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, Italy
| | - Maria Laura Costantino
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Systematic error compensation for improving accuracy of the electrosurgical unit. Med Eng Phys 2022; 108:103892. [DOI: 10.1016/j.medengphy.2022.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
|
3
|
Römer U, Liu J, Böl M. Surrogate-based Bayesian calibration of biomechanical models with isotropic material behavior. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3575. [PMID: 35094499 DOI: 10.1002/cnm.3575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
This work introduces a computational methodology to calibrate material models in biomechanical applications under uncertainty. We adopt a Bayesian approach, which estimates the probability distributions of hyperelastic material parameters, based on force-strain measurements. We approximate the parametric biomechanical model by combining a reduced order representation of the force response with a Polynomial Chaos expansion. The surrogate model allows to employ sampling-intensive Markov chain Monte Carlo methods and provides an efficient way to estimate (generalized) Sobol coefficients. We use a Sobol sensitivity analysis to assess the influence of material parameters and present an iterative procedure to quantify the accuracy of the surrogate model as additional uncertainty during Bayesian updating. The methodology is illustrated with three cases, tensile experiments on heat-induced whey protein gel, indentation experiments for oocytes and a manufactured example. Real experimental data are used for the calibration.
Collapse
Affiliation(s)
- Ulrich Römer
- Institut für Dynamik und Schwingungen, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jintian Liu
- Institut für Mechanik und Adaptronik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Markus Böl
- Institut für Mechanik und Adaptronik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Józsa TI, Padmos RM, El-Bouri WK, Hoekstra AG, Payne SJ. On the Sensitivity Analysis of Porous Finite Element Models for Cerebral Perfusion Estimation. Ann Biomed Eng 2021; 49:3647-3665. [PMID: 34155569 PMCID: PMC8671295 DOI: 10.1007/s10439-021-02808-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/01/2021] [Indexed: 11/08/2022]
Abstract
Computational physiological models are promising tools to enhance the design of clinical trials and to assist in decision making. Organ-scale haemodynamic models are gaining popularity to evaluate perfusion in a virtual environment both in healthy and diseased patients. Recently, the principles of verification, validation, and uncertainty quantification of such physiological models have been laid down to ensure safe applications of engineering software in the medical device industry. The present study sets out to establish guidelines for the usage of a three-dimensional steady state porous cerebral perfusion model of the human brain following principles detailed in the verification and validation (V&V 40) standard of the American Society of Mechanical Engineers. The model relies on the finite element method and has been developed specifically to estimate how brain perfusion is altered in ischaemic stroke patients before, during, and after treatments. Simulations are compared with exact analytical solutions and a thorough sensitivity analysis is presented covering every numerical and physiological model parameter. The results suggest that such porous models can approximate blood pressure and perfusion distributions reliably even on a coarse grid with first order elements. On the other hand, higher order elements are essential to mitigate errors in volumetric blood flow rate estimation through cortical surface regions. Matching the volumetric flow rate corresponding to major cerebral arteries is identified as a validation milestone. It is found that inlet velocity boundary conditions are hard to obtain and that constant pressure inlet boundary conditions are feasible alternatives. A one-dimensional model is presented which can serve as a computationally inexpensive replacement of the three-dimensional brain model to ease parameter optimisation, sensitivity analyses and uncertainty quantification. The findings of the present study can be generalised to organ-scale porous perfusion models. The results increase the applicability of computational tools regarding treatment development for stroke and other cerebrovascular conditions.
Collapse
Affiliation(s)
- T I Józsa
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - R M Padmos
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - W K El-Bouri
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.,Liverpool Centre for Cardiovascular Science, Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Thomas Drive, Liverpool, L14 3PE, UK
| | - A G Hoekstra
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - S J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|