1
|
Sener U, Wilcox JA, Boire AA. Leptomeningeal Disease: Current Approaches and Future Directions. Curr Neurol Neurosci Rep 2025; 25:25. [PMID: 40100294 PMCID: PMC11920312 DOI: 10.1007/s11910-025-01412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Leptomeningeal disease (LMD), or spread of cancer cells into the pia and arachnoid membranes encasing the brain and spinal cord, is associated with high symptom burden and poor survival at 2 to 5 months. Conventional treatments including photon-based radiation therapy, systemic chemotherapy, and intrathecal chemotherapy demonstrate limited efficacy. Despite significant successes for a range of solid tumors, immunotherapy has not yet demonstrated significant efficacy in management of LMD. Advances in understanding of LMD pathophysiology, improved diagnostics, and novel therapeutics are shifting this paradigm. In this article, we review diagnostic and treatment challenges associated with LMD. RECENT FINDINGS We discuss the use of novel cerebrospinal fluid (CSF) analysis techniques such as circulating tumor cell and CSF cell-free DNA assessment to overcome limitations of conventional diagnostic modalities. We then review advances in treatment including clinical trial data demonstrating efficacy of proton craniospinal radiation to treat the entire neuroaxis. We discuss emerging data regarding targeted therapeutics conferring durable survival benefit. Novel therapeutics and combinatorial treatment approaches will likely further improve outcomes for patients with LMD.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne A Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumor Center, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Hakime RG, Nagano LFP, Brassesco MS. ROCK2 Downregulation in Pediatric Medulloblastoma Increases Migration and Predicts the Involvement of SHH Non-canonical Signaling. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2025; 98:3-19. [PMID: 40165809 PMCID: PMC11899262 DOI: 10.59249/qtvt7676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The participation of the Rho-associated protein kinases (ROCK1 and 2) in the regulation of actin cytoskeleton organization, cell adhesion, motility, and gene expression has been extensively investigated in many tumors of different histology. However, their pathogenic roles in medulloblastoma (MB) remain understudied, demanding a deeper appreciation of their participation in cancer cell dissemination and tumor progression. Herein, we show that ROCK2 is downregulated in MB tumor samples and functionally increases migration of cell lines belonging to the SHH subgroup. A comprehensive comparative bioinformatic scrutiny of differentially expressed genes within a list of ROCK2 candidate substrates, uncovered a network of 21 dysregulated genes from which DYPSL3 (dihydropyrimidinase-related protein 3) denoted a strong positive correlation. Enrichment analysis revealed SHH/RHOA/ROCK2/DYPSL3 as top hub genes and the intersection between two biological processes of most importance in MB: actin cytoskeleton remodeling and neuron development. Of note, evidence shows that both ROCK2 and DYPSL3, interact with RHOA and in many tumor types they act as tumor suppressors, mitigating cell spreading. Alternatively, their impaired activity leads to undifferentiated phenotypes and inappropriate cytoskeletal dynamics affecting cell shape, attachment to the extracellular matrix, and cell movement. In parallel, cell motility is considered a prototypical non-canonical response to SHH mediated by RHOA. Therefore, we propose a model in which the interplay between these pathways may lead to a perturbation of proper cytoskeletal dynamics that underpins cell migration.
Collapse
Affiliation(s)
- Rodrigo Guedes Hakime
- Department of Cell and Molecular Biology, Ribeirão
Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo,
Brazil
- Department of Pediatrics, Ribeirão Preto Medical
School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luís Fernando Peinado Nagano
- Department of Biology, Faculty of Philosophy, Sciences
and Letters at Ribeirão Preto, University of São Paulo, Brazil
| | - María Sol Brassesco
- Department of Pediatrics, Ribeirão Preto Medical
School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Ozair A, Wilding H, Bhanja D, Mikolajewicz N, Glantz M, Grossman SA, Sahgal A, Le Rhun E, Weller M, Weiss T, Batchelor TT, Wen PY, Haas-Kogan DA, Khasraw M, Rudà R, Soffietti R, Vollmuth P, Subbiah V, Bettegowda C, Pham LC, Woodworth GF, Ahluwalia MS, Mansouri A. Leptomeningeal metastatic disease: new frontiers and future directions. Nat Rev Clin Oncol 2025; 22:134-154. [PMID: 39653782 DOI: 10.1038/s41571-024-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Leptomeningeal metastatic disease (LMD), encompassing entities of 'meningeal carcinomatosis', neoplastic meningitis' and 'leukaemic/lymphomatous meningitis', arises secondary to the metastatic dissemination of cancer cells from extracranial and certain intracranial malignancies into the leptomeninges and cerebrospinal fluid. The clinical burden of LMD has been increasing secondary to more sensitive diagnostics, aggressive local therapies for discrete brain metastases, and improved management of extracranial disease with targeted and immunotherapeutic agents, resulting in improved survival. However, owing to drug delivery challenges and the unique microenvironment of LMD, novel therapies against systemic disease have not yet translated into improved outcomes for these patients. Underdiagnosis and misdiagnosis are common, response assessment remains challenging, and the prognosis associated with this disease of whole neuroaxis remains extremely poor. The dearth of effective therapies is further challenged by the difficulties in studying this dynamic disease state. In this Review, a multidisciplinary group of experts describe the emerging evidence and areas of active investigation in LMD and provide directed recommendations for future research. Drawing upon paradigm-changing advances in mechanistic science, computational approaches, and trial design, the authors discuss domain-specific and cross-disciplinary strategies for optimizing the clinical and translational research landscape for LMD. Advances in diagnostics, multi-agent intrathecal therapies, cell-based therapies, immunotherapies, proton craniospinal irradiation and ongoing clinical trials offer hope for improving outcomes for patients with LMD.
Collapse
Affiliation(s)
- Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah Wilding
- Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Debarati Bhanja
- Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Stuart A Grossman
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Center, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tracy T Batchelor
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daphne A Haas-Kogan
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumour Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
- Department of Oncology, Candiolo Institute for Cancer Research, FPO-IRCCS, Candiolo, Turin, Italy
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, University Hospital Bonn, Bonn, Germany
- Division for Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vivek Subbiah
- Early Phase Drug Development Program, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Chetan Bettegowda
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lily C Pham
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
4
|
van der Wel JWT, Boelens MC, Jebbink M, Smulders SA, Maas KW, Luitse MJA, Compter A, Boltjes RPB, Sol N, Monkhorst K, van den Broek D, Smit EF, de Langen AJ, Brandsma D. Osimertinib-induced DNA resistance mutations in cerebrospinal fluid of epidermal growth factor receptor-mutated non-small-cell lung carcinoma patients developing leptomeningeal metastases: Osimertinib Resistance Analysis-leptomeningeal metastases study. Neuro Oncol 2024; 26:2316-2327. [PMID: 39110039 PMCID: PMC11630515 DOI: 10.1093/neuonc/noae138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Diagnosis and treatment of leptomeningeal metastases (LM) in epidermal growth factor receptor mutation-positive (EGFRm +) non-small-cell lung carcinoma (NSCLC) is challenging. We aimed to identify resistance mechanisms (RM) to osimertinib in cerebrospinal fluid (CSF) and plasma. METHODS EGFRm + patients with new or progressive LM during osimertinib were enrolled. NGS Ampliseq was performed on DNA isolated from CSF. Patients were prescribed osimertinib dose escalation (DE, 160 mg QD) following lumbar puncture. Clinical and radiological response was evaluated 4 weeks after osimertinib DE. RESULTS Twenty-eight patients were included. The driver mutation was identified in 93% of CSF samples (n = 26). Seven (27%) harbored ≥1 RM. Twenty-five patients (89%) were prescribed osimertinib DE. Four weeks afterwards, symptoms improved in 5 patients, stabilized in 9 and worsened in 11 patients. Twenty-one (84%) patients underwent MR imaging. Four showed radiological improvement, 14 stabilization, and 3 worsening. CONCLUSIONS In 27% of patients, an RM was found in CSF ctDNA, none of which are targetable at the time of writing, and the clinical efficacy of osimertinib DE seems limited. There is much to gain in diagnostic as well as therapeutic strategies in EGFRm + NSCLC LM.
Collapse
Affiliation(s)
- J W Tijmen van der Wel
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mirjam C Boelens
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Merel Jebbink
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sietske A Smulders
- Department of Pulmonary Diseases, Jeroen Bosch Hospital, 's Hertogenbosch, The Netherlands
| | - Klaartje W Maas
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pulmonary Diseases, Haaglanden Medical Center, The Hague, The Netherlands
| | - Merel J A Luitse
- Department of Neuro-oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Annette Compter
- Department of Neuro-oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robin P B Boltjes
- Department of Neuro-oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nik Sol
- Department of Neuro-oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department of Pulmonary Diseases, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Adrianus J de Langen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dieta Brandsma
- Corresponding Author: Dieta Brandsma, MD, PhD, Department of Neuro-oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands ()
| |
Collapse
|
5
|
Arshad N, Biswas N, Gill J, Kesari S, Ashili S. Drug delivery in leptomeningeal disease: Navigating barriers and beyond. Drug Deliv 2024; 31:2375521. [PMID: 38995190 PMCID: PMC11249152 DOI: 10.1080/10717544.2024.2375521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.
Collapse
Affiliation(s)
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, Telangana, India
- CureScience, San Diego, California, USA
| | - Jaya Gill
- CureScience, San Diego, California, USA
| | - Santosh Kesari
- Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | | |
Collapse
|
6
|
Tong X, Remsik J, Brook J, Petrova B, Xu L, Li MJ, Snyder J, Chabot K, Estrera R, Osei-Gyening I, Nobre AR, Wang H, Osman AM, Wong AYL, Sidharta M, Piedrafita-Ortiz S, Manoranjan B, Zhou T, Murali R, Hamard PJ, Koche R, He Y, Kanarek N, Boire A. Retinoid X Receptor Signaling Mediates Cancer Cell Lipid Metabolism in the Leptomeninges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618083. [PMID: 39464048 PMCID: PMC11507812 DOI: 10.1101/2024.10.13.618083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer cells metastatic to the leptomeninges encounter a metabolically-challenging extreme microenvironment. To understand adaptations to this space, we subjected leptomeningeal-metastatic (LeptoM) mouse breast and lung cancers isolated from either the leptomeninges or orthotopic primary sites to ATAC-and RNA-sequencing. When inhabiting the leptomeninges, the LeptoM cells demonstrated transcription downstream of retinoid-X-receptors (RXRs). We found evidence of local retinoic acid (RA) generation in both human leptomeningeal metastasis and mouse models in the form of elevated spinal fluid retinol and expression of RA-generating dehydrogenases within the leptomeningeal microenvironment. Stimulating LeptoM cells with RA induced expression of transcripts encoding de novo fatty acid synthesis pathway enzymes in vitro . In vivo , while deletion of Stra6 did not alter cancer cell leptomeningeal growth, knockout of Rxra/b/g interrupted cancer cell lipid biosynthesis and arrested cancer growth. These observations illustrate a mechanism whereby metastatic cancer cells awake locally-generated developmental cues for metabolically reprograming, suggesting novel therapeutic approaches.
Collapse
|
7
|
Wilcox JA, Chukwueke UN, Ahn MJ, Aizer AA, Bale TA, Brandsma D, Brastianos PK, Chang S, Daras M, Forsyth P, Garzia L, Glantz M, Oliva ICG, Kumthekar P, Le Rhun E, Nagpal S, O'Brien B, Pentsova E, Lee EQ, Remsik J, Rudà R, Smalley I, Taylor MD, Weller M, Wefel J, Yang JT, Young RJ, Wen PY, Boire AA. Leptomeningeal metastases from solid tumors: A Society for Neuro-Oncology and American Society of Clinical Oncology consensus review on clinical management and future directions. Neuro Oncol 2024; 26:1781-1804. [PMID: 38902944 PMCID: PMC11449070 DOI: 10.1093/neuonc/noae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 06/22/2024] Open
Abstract
Leptomeningeal metastases (LM) are increasingly becoming recognized as a treatable, yet generally incurable, complication of advanced cancer. As modern cancer therapeutics have prolonged the lives of patients with metastatic cancer, specifically in patients with parenchymal brain metastases, treatment options, and clinical research protocols for patients with LM from solid tumors have similarly evolved to improve survival within specific populations. Recent expansions in clinical investigation, early diagnosis, and drug development have given rise to new unanswered questions. These include leptomeningeal metastasis biology and preferred animal modeling, epidemiology in the modern cancer population, ensuring validation and accessibility of newer leptomeningeal metastasis diagnostics, best clinical practices with multimodality treatment options, clinical trial design and standardization of response assessments, and avenues worthy of further research. An international group of multi-disciplinary experts in the research and management of LM, supported by the Society for Neuro-Oncology and American Society of Clinical Oncology, were assembled to reach a consensus opinion on these pressing topics and provide a roadmap for future directions. Our hope is that these recommendations will accelerate collaboration and progress in the field of LM and serve as a platform for further discussion and patient advocacy.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ugonma N Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ayal A Aizer
- Department of Radiation Oncology, Brigham and Women's Hospital / Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Priscilla K Brastianos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Chang
- Division of Neuro-Oncology, Department of Neurosurgery, University of San Francisco California, San Francisco, California, USA
| | - Mariza Daras
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priya Kumthekar
- The Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Emilie Le Rhun
- Departments of Neurology and Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Seema Nagpal
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Barbara O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elena Pentsova
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eudocia Quant Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan Remsik
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science Hospital, Turin, Italy
- Department of Neurology, Castelfranco Veneto and Treviso Hospitals, Castelfranco Veneto, Italy
| | - Inna Smalley
- Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
- Neuro-oncology Research Program, Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jeffrey Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan T Yang
- Department of Radiation Oncology, Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adrienne A Boire
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
8
|
Frechette KM, Breen WG, Brown PD, Sener UT, Webb LM, Routman DM, Laack NN, Mahajan A, Lehrer EJ. Radiotherapy and Systemic Treatment for Leptomeningeal Disease. Biomedicines 2024; 12:1792. [PMID: 39200256 PMCID: PMC11351760 DOI: 10.3390/biomedicines12081792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Leptomeningeal disease (LMD) is a devastating sequelae of metastatic spread that affects approximately 5% of cancer patients. The incidence of LMD is increasing due to advancements in systemic therapy and enhanced detection methods. The purpose of this review is to provide a detailed overview of the evidence in the detection, prognostication, and treatment of LMD. A comprehensive literature search of PUBMED was conducted to identify articles reporting on LMD including existing data and ongoing clinical trials. We found a wide array of treatment options available for LMD including chemotherapy, targeted agents, and immunotherapy as well as several choices for radiotherapy including whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and craniospinal irradiation (CSI). Despite treatment, the prognosis for patients with LMD is dismal, typically 2-4 months on average. Novel therapies and combination approaches are actively under investigation with the aim of improving outcomes and quality of life for patients with LMD. Recent prospective data on the use of proton CSI for patients with LMD have demonstrated its potential survival benefit with follow-up investigations underway. There is a need for validated metrics to predict prognosis and improve patient selection for patients with LMD in order to optimize treatment approaches.
Collapse
Affiliation(s)
- Kelsey M. Frechette
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Ugur T. Sener
- Department of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA; (U.T.S.); (L.M.W.)
| | - Lauren M. Webb
- Department of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA; (U.T.S.); (L.M.W.)
| | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| |
Collapse
|
9
|
Remsik J, Boire A. The path to leptomeningeal metastasis. Nat Rev Cancer 2024; 24:448-460. [PMID: 38871881 PMCID: PMC11404355 DOI: 10.1038/s41568-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/15/2024]
Abstract
The leptomeninges, the cerebrospinal-fluid-filled tissues surrounding the central nervous system, play host to various pathologies including infection, neuroinflammation and malignancy. Spread of systemic cancer into this space, termed leptomeningeal metastasis, occurs in 5-10% of patients with solid tumours and portends a bleak clinical prognosis. Previous, predominantly descriptive, clinical studies have provided few insights. Recent development of preclinical leptomeningeal metastasis models, alongside genomic, transcriptomic and proteomic sequencing efforts, has provided groundwork for mechanistic understanding and identification of long-needed therapeutic targets. Although previously understood as an anatomically isolated compartment, the leptomeninges are increasingly appreciated as a major conduit of communication between the systemic circulation and the central nervous system. Despite the unique nature of the leptomeningeal microenvironment, the general principles of metastasis hold true: cells metastasizing to the leptomeninges must gain access to the new environment, survive within the space and evade the immune system. The study of leptomeningeal metastasis has the potential to uncover novel site-specific metastatic principles and illuminate the physiology of the leptomeningeal space. In this Review, we provide a biology-focused overview of how metastatic cells reach the leptomeninges, thrive in this nutritionally sparse environment and evade the detection of the omnipresent immune system.
Collapse
Affiliation(s)
- Jan Remsik
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Adrienne Boire
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumour Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Freret ME, Boire A. The anatomic basis of leptomeningeal metastasis. J Exp Med 2024; 221:e20212121. [PMID: 38451255 PMCID: PMC10919154 DOI: 10.1084/jem.20212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/20/2022] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Leptomeningeal metastasis (LM), or spread of cancer to the cerebrospinal fluid (CSF)-filled space surrounding the central nervous system, is a fatal complication of cancer. Entry into this space poses an anatomical challenge for cancer cells; movement of cells between the blood and CSF is tightly regulated by the blood-CSF barriers. Anatomical understanding of the leptomeninges provides a roadmap of corridors for cancer entry. This Review describes the anatomy of the leptomeninges and routes of cancer spread to the CSF. Granular understanding of LM by route of entry may inform strategies for novel diagnostic and preventive strategies as well as therapies.
Collapse
Affiliation(s)
- Morgan E. Freret
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Wallace G, Kundalia R, Vallebuona E, Cao B, Kim Y, Forsyth P, Soyano A, Smalley I, Pina Y. Factors associated with overall survival in breast cancer patients with leptomeningeal disease (LMD): a single institutional retrospective review. Breast Cancer Res 2024; 26:55. [PMID: 38553702 PMCID: PMC10979566 DOI: 10.1186/s13058-024-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/15/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Breast cancer-related leptomeningeal disease (BC-LMD) is a dire diagnosis for 5-8% of patients with breast cancer (BC). We conducted a retrospective review of BC-LMD patients diagnosed at Moffitt Cancer Center from 2011 to 2020, to determine the changing incidence of BC-LMD, factors which are associated with the progression of BC CNS metastasis to BC-LMD, and factors which are associated with OS for patients with BC-LMD. METHODS Patients with BC and brain/spinal metastatic disease were identified. For those who eventually developed BC-LMD, we used Kaplan-Meier survival curve, log-rank test, univariable, and multivariate Cox proportional hazards regression model to identify factors affecting time from CNS metastasis to BC-LMD and OS. RESULTS 128 cases of BC-LMD were identified. The proportion of BC-LMD to total BC patients was higher between 2016 and 2020 when compared to 2011-2015. Patients with HR+ or HER2 + BC experienced longer times between CNS metastasis and LMD than patients with triple-negative breast cancer (TNBC). Systemic therapy and whole-brain radiation therapy (WBRT) was associated with prolonged progression to LMD in all patients. Hormone therapy in patients with HR + BC were associated with a delayed BC-CNS metastasis to LMD progression. Lapatinib treatment was associated with a delayed progression to LMD in patients with HER2 + BC. Patients with TNBC-LMD had shorter OS compared to those with HR + and HER2 + BC-LMD. Systemic therapy, intrathecal (IT) therapy, and WBRT was associated with prolonged survival for all patients. Lapatinib and trastuzumab therapy was associated with improved OS in patients with HER2 + BC-LMD. CONCLUSIONS Increasing rates of BC-LMD provide treatment challenges and opportunities for clinical trials. Prospective trials testing lapatinib and/or similar tyrosine kinase inhibitors, IT therapies, and combination treatments are urgently needed.
Collapse
Affiliation(s)
- Gerald Wallace
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Ronak Kundalia
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ethan Vallebuona
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA
| | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aixa Soyano
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Inna Smalley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA.
| | - Yolanda Pina
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA.
| |
Collapse
|
12
|
Malani R, Bhatia A, Warner AB, Yang JT. Leptomeningeal Carcinomatosis from Solid Tumor Malignancies: Treatment Strategies and Biomarkers. Semin Neurol 2023; 43:859-866. [PMID: 37989214 DOI: 10.1055/s-0043-1776996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Leptomeningeal metastases/diseases (LMDs) are a late-stage complication of solid tumor or hematologic malignancies. LMD is spread of cancer cells to the layers of the leptomeninges (pia and arachnoid maters) and subarachnoid space seen in 3 to 5% of cancer patients. It is a disseminated disease which carries with it significant neurologic morbidity and mortality. Our understanding of disease pathophysiology is currently lacking; however, advances are being made. As our knowledge of disease pathogenesis has improved, treatment strategies have evolved. Mainstays of treatment such as radiotherapy have changed from involved-field radiotherapy strategies to proton craniospinal irradiation which has demonstrated promising results in recent clinical trials. Systemic treatment strategies have also improved from more traditional chemotherapeutics with limited central nervous system (CNS) penetration to more targeted therapies with better CNS tumor response. Many challenges remain from earlier clinical detection of disease through improvement of active treatment options, but we are getting closer to meaningful treatment.
Collapse
Affiliation(s)
- Rachna Malani
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ankush Bhatia
- Department of Neurology, Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Allison Betof Warner
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California
| | - Jonathan T Yang
- Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Fitzpatrick A, Iravani M, Mills A, Vicente D, Alaguthurai T, Roxanis I, Turner NC, Haider S, Tutt ANJ, Isacke CM. Genomic profiling and pre-clinical modelling of breast cancer leptomeningeal metastasis reveals acquisition of a lobular-like phenotype. Nat Commun 2023; 14:7408. [PMID: 37973922 PMCID: PMC10654396 DOI: 10.1038/s41467-023-43242-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Breast cancer leptomeningeal metastasis (BCLM), where tumour cells grow along the lining of the brain and spinal cord, is a devastating development for patients. Investigating this metastatic site is hampered by difficulty in accessing tumour material. Here, we utilise cerebrospinal fluid (CSF) cell-free DNA (cfDNA) and CSF disseminated tumour cells (DTCs) to explore the clonal evolution of BCLM and heterogeneity between leptomeningeal and extracranial metastatic sites. Somatic alterations with potential therapeutic actionability were detected in 81% (17/21) of BCLM cases, with 19% detectable in CSF cfDNA only. BCLM was enriched in genomic aberrations in adherens junction and cytoskeletal genes, revealing a lobular-like breast cancer phenotype. CSF DTCs were cultured in 3D to establish BCLM patient-derived organoids, and used for the successful generation of BCLM in vivo models. These data reveal that BCLM possess a unique genomic aberration profile and highlight potential cellular dependencies in this hard-to-treat form of metastatic disease.
Collapse
Affiliation(s)
- Amanda Fitzpatrick
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Marjan Iravani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Adam Mills
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - David Vicente
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Nicholas C Turner
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Breast Cancer Now Research Unit, Guy's Hospital, King's College London, London, UK
- Oncology and Haematology Directorate, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Clare M Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
14
|
Wilcox JA, Estrera R, Boire A. The Spectrum of Headache in Leptomeningeal Metastases: A Comprehensive Review with Clinical Management Guidelines. Curr Pain Headache Rep 2023; 27:695-706. [PMID: 37874457 PMCID: PMC10713777 DOI: 10.1007/s11916-023-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE OF REVIEW Headaches are a common, oftentimes debilitating symptom in patients with leptomeningeal metastases. RECENT FINDINGS The third edition of the International Classification of Headache Disorders provides a useful diagnostic framework for headaches secondary to leptomeningeal metastases based on the temporal relationship of headache with disease onset, change in headache severity in correlation with leptomeningeal disease burden, and accompanying neurologic signs such as cranial nerve palsies and encephalopathy. However, headaches in patients with leptomeningeal metastases can be further defined by a wide range of varying cancer- and treatment-related pathophysiologies, each requiring a tailored approach. A thorough review of the literature and expert opinion on five observed headache sub-classifications in patients with leptomeningeal metastases is provided, with attention to necessary diagnostic testing, recommended first-line treatments, and prevention strategies.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Estrera
- Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Bai K, Chen X, Qi X, Zhang Y, Zou Y, Li J, Yu L, Li Y, Jiang J, Yang Y, Liu Y, Feng S, Bu H. Cerebrospinal fluid circulating tumour DNA genotyping and survival analysis in lung adenocarcinoma with leptomeningeal metastases. J Neurooncol 2023; 165:149-160. [PMID: 37897649 PMCID: PMC10638181 DOI: 10.1007/s11060-023-04471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE The prognosis of patients with leptomeningeal metastasis (LM) remains poor. Circulating tumour DNA (ctDNA) has been proven to be abundantly present in cerebrospinal fluid (CSF); hence, its clinical implication as a biomarker needs to be further verified. METHODS We conducted a retrospective study of 35 lung adenocarcinoma (LUAD) patients with LM, and matched CSF and plasma samples were collected from all patients. All paired samples underwent next-generation sequencing (NGS) of 139 lung cancer-associated genes. The clinical characteristics and genetic profiling of LM were analysed in association with survival prognosis. RESULTS LM showed genetic heterogeneity, in which CSF had a higher detection rate of ctDNA (P = 0.003), a higher median mutation count (P < 0.0001), a higher frequency of driver mutations (P < 0.01), and more copy number variation (CNV) alterations (P < 0.001) than plasma. The mutation frequencies of the EGFR, TP53, CDKN2A, MYC and CDKN2B genes were easier to detect in CSF than in LUAD tissue (P < 0.05), possibly reflecting the underlying mechanism of LM metastasis. CSF ctDNA is helpful for analysing the mechanism of EGFR-TKI resistance. In cohort 1, which comprised patients who received 1/2 EGFR-TKIs before the diagnosis of LM, TP53 and CDKN2A were the most common EGFR-independent resistant mutations. In cohort 2, comprising those who progressed after osimertinib and developed LM, 7 patients (43.75%) had EGFR CNV detected in CSF but not plasma. Furthermore, patient characteristics and various genes were included for interactive survival analysis. Patients with EGFR-mutated LUAD (P = 0.042) had a higher median OS, and CSF ctDNA mutation with TERT (P = 0.013) indicated a lower median OS. Last, we reported an LM case in which CSF ctDNA dynamic changes were well correlated with clinical treatment. CONCLUSIONS CSF ctDNA could provide a more comprehensive genetic landscape of LM, indicating the potential metastasis-related and EGFR-TKI resistance mechanisms of LM patients. In addition, genotyping of CSF combined with clinical outcomes can predict the prognosis of LUAD patients with LM.
Collapse
Affiliation(s)
- Kaixuan Bai
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Xin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- Department of Neurology, Xingtai People's Hospital, Xingtai, China
| | - Xuejiao Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yueli Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- Department of General Practice, Hengshui People's Hospital, Hengshui, China
| | - Lili Yu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jiajia Jiang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yi Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yajing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shuanghao Feng
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
16
|
Wu SA, Jia DT, Schwartz M, Mulcahy M, Guo K, Tate MC, Sachdev S, Kostelecky N, Escobar DJ, Brat DJ, Heimberger AB, Lukas RV. HER2+ esophageal carcinoma leptomeningeal metastases treated with intrathecal trastuzumab regimen. CNS Oncol 2023; 12:CNS99. [PMID: 37219390 PMCID: PMC10410688 DOI: 10.2217/cns-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Materials & methods: We recently reported the largest trial of breast cancer patients with HER2 positive leptomeningeal metastases (LM) treated with trastuzumab. An additional treatment indication was explored as part of a single institution retrospective case series of HER2 positive esophageal adenocarcinoma LM (n = 2). Results: One patient received intrathecal trastuzumab (80 mg twice weekly) as part of their treatment regimen with durable long-term response and clearance of circulating tumor cells in the cerebral spinal fluid. The other patient demonstrated rapid progression and death as previously described in the literature. Conclusion: Intrathecal trastuzumab is a well-tolerated and reasonable therapeutic option worthy of further exploration for patients with HER2 positive esophageal carcinoma LM. An associative, but not a causal relationship, can be made regarding therapeutic intervention.
Collapse
Affiliation(s)
- Scott A Wu
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dan Tong Jia
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Margaret Schwartz
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Mary Mulcahy
- Department of Hematology & Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kuanghua Guo
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Matthew C Tate
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicolas Kostelecky
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David J Escobar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Webb MJ, Breen WG, Laack NN, Leventakos K, Campian JL, Sener U. Proton craniospinal irradiation with bevacizumab and pembrolizumab for leptomeningeal disease: a case report. CNS Oncol 2023; 12:CNS101. [PMID: 37491842 PMCID: PMC10410687 DOI: 10.2217/cns-2023-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Leptomeningeal disease (LMD) remains a challenging condition with a dismal prognosis. In this case study, we report partial response of LMD in a patient with metastatic large cell neuroendocrine carcinoma following treatment with proton craniospinal irradiation (CSI), bevacizumab, and pembrolizumab. Two years after the initial diagnosis, he presented with LMD. He underwent proton CSI with bevacizumab followed by combination therapy with pembrolizumab and bevacizumab. He had a partial disease response with progression-free survival after LMD diagnosis of 4.6 months. He unfortunately developed pembrolizumab induced hypophysitis, after which he experienced rapid neurologic clinical progression. Overall, this novel combination led to a durable partial response which warrants prospective evaluation.
Collapse
Affiliation(s)
- Mason J Webb
- Department of Hematology & Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jian L Campian
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Roy-O'Reilly MA, Lanman T, Ruiz A, Rogawski D, Stocksdale B, Nagpal S. Diagnostic and Therapeutic Updates in Leptomeningeal Disease. Curr Oncol Rep 2023; 25:937-950. [PMID: 37256537 PMCID: PMC10326117 DOI: 10.1007/s11912-023-01432-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Leptomeningeal disease (LMD) is a devastating complication of advanced metastatic cancer associated with a poor prognosis and limited treatment options. This study reviews the current understanding of the clinical presentation, pathogenesis, diagnosis, and treatment of LMD. We highlight opportunities for advances in this disease. RECENT FINDINGS In recent years, the use of soluble CSF biomarkers has expanded, suggesting improved sensitivity over traditional cytology, identification of targetable mutations, and potential utility for monitoring disease burden. Recent studies of targeted small molecules and intrathecal based therapies have demonstrated an increase in overall and progression-free survival. In addition, there are several ongoing trials evaluating immunotherapy in LMD. Though overall prognosis of LMD remains poor, studies suggest a potential role for soluble CSF biomarkers in diagnosis and management and demonstrate promising findings in patient outcomes with targeted therapies for specific solid tumors. Despite these advances, there continues to be a gap of knowledge in this disease, emphasizing the importance of inclusion of LMD patients in clinical trials.
Collapse
Affiliation(s)
| | - Tyler Lanman
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA
| | - Amber Ruiz
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA
| | - David Rogawski
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA
| | - Brian Stocksdale
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA
| | - Seema Nagpal
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA.
| |
Collapse
|
19
|
Ahmad A, Khan P, Rehman AU, Batra SK, Nasser MW. Immunotherapy: an emerging modality to checkmate brain metastasis. Mol Cancer 2023; 22:111. [PMID: 37454123 PMCID: PMC10349473 DOI: 10.1186/s12943-023-01818-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
The diagnosis of brain metastasis (BrM) has historically been a dooming diagnosis that is nothing less than a death sentence, with few treatment options for palliation or prolonging life. Among the few treatment options available, brain radiotherapy (RT) and surgical resection have been the backbone of therapy. Within the past couple of years, immunotherapy (IT), alone and in combination with traditional treatments, has emerged as a reckoning force to combat the spread of BrM and shrink tumor burden. This review compiles recent reports describing the potential role of IT in the treatment of BrM in various cancers. It also examines the impact of the tumor microenvironment of BrM on regulating the spread of cancer and the role IT can play in mitigating that spread. Lastly, this review also focuses on the future of IT and new clinical trials pushing the boundaries of IT in BrM.
Collapse
Affiliation(s)
- Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
20
|
Zhu Z, Hou Q, Wang B, Li C, Liu L, Gong W, Chai J, Guo H, Jia Y. FKBP4 regulates 5-fluorouracil sensitivity in colon cancer by controlling mitochondrial respiration. Life Sci Alliance 2022; 5:5/11/e202201413. [PMID: 35981890 PMCID: PMC9389594 DOI: 10.26508/lsa.202201413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
FKBP4 controls mitochondrial respiration via modulating COA6-mediated biogenesis and activity of mitochondrial complex IV, thereby regulating 5-fluorouracil sensitivity in colon cancer. Mitochondrial respiration and metabolism play a key role in the pathogenesis and progression of colon adenocarcinoma (COAD). Here, we report a functional pool of FKBP4, a co-chaperone protein, in the mitochondrial intermembrane space (IMS) of colon cancer cells. We found that IMS-localized FKBP4 is essential for the maintenance of mitochondrial respiration, thus contributing to the sensitivity of COAD cells to 5-fluorouracil (5-FU). Mechanistically, FKBP4 interacts with COA6 and controls the assembly of the mitochondrial COA6/SCO1/SCO2 complex, thereby governing COA6-regulated biogenesis and activity of mitochondrial cytochrome c oxidase (complex IV). Thus, our data reveal IMS-localized FKBP4 as a novel regulator of 5-FU sensitivity in COAD, linking mitochondrial respiration to 5-FU sensitivity in COAD.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingsheng Hou
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bishi Wang
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Changhao Li
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Luguang Liu
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weipeng Gong
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Chai
- Gastrointestinal Surgery Ward I, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongliang Guo
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanhan Jia
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Wilcox JA, Li MJ, Boire AA. Leptomeningeal Metastases: New Opportunities in the Modern Era. Neurotherapeutics 2022; 19:1782-1798. [PMID: 35790709 PMCID: PMC9723010 DOI: 10.1007/s13311-022-01261-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 02/07/2023] Open
Abstract
Leptomeningeal metastases arise from cancer cell entry into the subarachnoid space, inflicting significant neurologic morbidity and mortality across a wide range of malignancies. The modern era of cancer therapeutics has seen an explosion of molecular-targeting agents and immune-mediated strategies for patients with breast, lung, and melanoma malignancies, with meaningful extracranial disease control and improvement in patient survival. However, the clinical efficacy of these agents in those with leptomeningeal metastases remains understudied, due to the relative rarity of this patient population, the investigational challenges associated with studying this dynamic disease state, and brisk disease pace. Nevertheless, retrospective studies, post hoc analyses, and small prospective trials in the last two decades provide a glimmer of hope for patients with leptomeningeal metastases, suggesting that several cancer-directed strategies are not only active in the intrathecal space but also improve survival against historical odds. The continued development of clinical trials devoted to patients with leptomeningeal metastases is critical to establish robust efficacy outcomes in this patient population, define drug pharmacokinetics in the intrathecal space, and uncover new avenues for treatment in the face of leptomeningeal therapeutic resistance.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Min Jun Li
- Brain Tumor Center, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne A Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumor Center, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
22
|
Tobar LE, Farnsworth RH, Stacker SA. Brain Vascular Microenvironments in Cancer Metastasis. Biomolecules 2022; 12:biom12030401. [PMID: 35327593 PMCID: PMC8945804 DOI: 10.3390/biom12030401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Primary tumours, particularly from major solid organs, are able to disseminate into the blood and lymphatic system and spread to distant sites. These secondary metastases to other major organs are the most lethal aspect of cancer, accounting for the majority of cancer deaths. The brain is a frequent site of metastasis, and brain metastases are often fatal due to the critical role of the nervous system and the limited options for treatment, including surgery. This creates a need to further understand the complex cell and molecular biology associated with the establishment of brain metastasis, including the changes to the environment of the brain to enable the arrival and growth of tumour cells. Local changes in the vascular network, immune system and stromal components all have the potential to recruit and foster metastatic tumour cells. This review summarises our current understanding of brain vascular microenvironments, fluid circulation and drainage in the context of brain metastases, as well as commenting on current cutting-edge experimental approaches used to investigate changes in vascular environments and alterations in specialised subsets of blood and lymphatic vessel cells during cancer spread to the brain.
Collapse
Affiliation(s)
- Lucas E. Tobar
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rae H. Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven A. Stacker
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia
- Correspondence: ; Tel.: +61-3-8559-7106
| |
Collapse
|
23
|
Lukas RV, Thakkar JP, Cristofanilli M, Chandra S, Sosman JA, Patel JD, Kumthekar P, Stupp R, Lesniak MS. Leptomeningeal metastases: the future is now. J Neurooncol 2022; 156:443-452. [DOI: 10.1007/s11060-021-03924-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
|
24
|
Pellerino A, Brastianos PK, Rudà R, Soffietti R. Leptomeningeal Metastases from Solid Tumors: Recent Advances in Diagnosis and Molecular Approaches. Cancers (Basel) 2021; 13:2888. [PMID: 34207653 PMCID: PMC8227730 DOI: 10.3390/cancers13122888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Leptomeningeal metastases (LM) from solid tumors represent an unmet need of increasing importance due to an early use of MRI for diagnosis and improvement of outcome of some molecular subgroups following targeted agents and immunotherapy. In this review, we first discussed factors limiting the efficacy of targeted agents in LM, such as the molecular divergence between primary tumors and CNS lesions and CNS barriers at the level of the normal brain, brain tumors and CSF. Further, we reviewed pathogenesis and experimental models and modalities, such as MRI (with RANO and ESO/ESMO criteria), CSF cytology and liquid biopsy, to improve diagnosis and monitoring following therapy. Efficacy and limitations of targeted therapies for LM from EGFR-mutant and ALK-rearranged NSCLC, HER2-positive breast cancer and BRAF-mutated melanomas are reported, including the use of intrathecal administration or modification of traditional cytotoxic compounds. The efficacy of checkpoint inhibitors in LM from non-druggable tumors, in particular triple-negative breast cancer, is discussed. Last, we focused on some recent techniques to improve drug delivery.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (R.R.); (R.S.)
| | - Priscilla K. Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (R.R.); (R.S.)
- Department of Neurology, Castelfranco Veneto and Brain Tumor Board Treviso Hospital, 31100 Treviso, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (R.R.); (R.S.)
| |
Collapse
|
25
|
Dankner M, Lam S, Degenhard T, Garzia L, Guiot MC, Petrecca K, Siegel PM. The Underlying Biology and Therapeutic Vulnerabilities of Leptomeningeal Metastases in Adult Solid Cancers. Cancers (Basel) 2021; 13:cancers13040732. [PMID: 33578853 PMCID: PMC7916586 DOI: 10.3390/cancers13040732] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 01/18/2023] Open
Abstract
Metastasis to the central nervous system occurs in approximately 20% of patients with advanced solid cancers such as lung cancer, breast cancer, and melanoma. While central nervous system metastases most commonly form in the brain parenchyma, metastatic cancer cells may also reside in the subarachnoid space surrounding the brain and spinal cord to form tumors called leptomeningeal metastases. Leptomeningeal metastasis involves cancer cells that reach the subarachnoid space and proliferate in the cerebrospinal fluid compartment within the leptomeninges, a sequela associated with a myriad of symptoms and poor prognosis. Cancer cells exposed to cerebrospinal fluid in the leptomeninges must contend with a unique microenvironment from those that establish within the brain or other organs. Leptomeningeal lesions provide a formidable clinical challenge due to their often-diffuse infiltration within the subarachnoid space. The molecular mechanisms that promote the establishment of leptomeningeal metastases have begun to be elucidated, demonstrating that it is a biological entity distinct from parenchymal brain metastases and is associated with specific molecular drivers. In this review, we outline the current state of knowledge pertaining to the diagnosis, treatment, and molecular underpinnings of leptomeningeal metastasis.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; (M.D.); (M.-C.G.)
| | - Stephanie Lam
- Department of Diagnostic Radiology, Faculty of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H3T 1E2, Canada;
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Theresa Degenhard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada; (T.D.); (K.P.)
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Livia Garzia
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Marie-Christine Guiot
- Goodman Cancer Research Centre, Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; (M.D.); (M.-C.G.)
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada; (T.D.); (K.P.)
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pathology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada; (T.D.); (K.P.)
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Peter M. Siegel
- Goodman Cancer Research Centre, Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; (M.D.); (M.-C.G.)
- Department of Diagnostic Radiology, Faculty of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H3T 1E2, Canada;
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada; (T.D.); (K.P.)
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada
- Correspondence: ; Tel.: +1-514-398-4259; Fax: +1-514-398-6769
| |
Collapse
|