1
|
Du Y, Jiang X, Fu K, Cui C. Pre-Chemotherapy D-Dimer Levels as Predictors of Survival Outcomes in Advanced Gastric Cancer. Med Sci Monit 2025; 31:e947727. [PMID: 40380762 PMCID: PMC12096915 DOI: 10.12659/msm.947727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/14/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Gastric cancer is a common malignancy of the digestive system. There are presently no efficacious indicators to evaluate its curative effect and prognosis. Increased plasma D-dimer was reported to have a very strong association with neoplasm in advanced stages and poor overall survival (OS) for some malignant tumors in morbidity. MATERIAL AND METHODS Using propensity score analysis, we examined the potential effect of pre-chemotherapy plasma D-dimer level (PDL) on OS and progression-free survival (PFS) in patients with advanced gastric cancer (AGC). We divided 134 patients with AGC into 2 groups: low pretreatment D-dimer (LPD) and high pretreatment D-dimer (HPD). Using propensity score analysis, one-to-one matches were performed for both groups to correct bias caused by different covariate distributions. RESULTS Before matching, patients with HPD had obviously lower median OS and PFS versus patients with LPD (months: 6.0 vs 8.7, P=0.015; 12.2 vs 15.1, P=0.037). Multivariate analysis indicated that PDL did not independently predict OS (hazard ratio [HR] 1.362, 95% confidence interval (CI) 0.851-2.181, P=0.198). In accordance with the first response evaluation, patients with PD had an increased mean D-dimer by 1.72 ug/mL compared with patients with PR and SD (P=0.006). There was a 15.1-month median OS for patients with LPD compared to 12.2 months for those with HPD (P=0.032). Multivariate analysis discovered that OS was independently predicted by PDL (HR of 1.711, 95% CI of 1.019 to 2.875, P=0.042), and the first response evaluation's mean D-dimer was raised by 1.91 ug/mL in patients with PD (P=0.039). CONCLUSIONS Gastric cancer patients with high D-dimer level had worse outcomes.
Collapse
Affiliation(s)
- Yali Du
- Department of Blood Transfusion, The Sixth Medical Center of PLA General Hospital, Beijing, PR China
| | - Xuebing Jiang
- Department of Blood Transfusion, The Sixth Medical Center of PLA General Hospital, Beijing, PR China
| | - Kaifei Fu
- Department of Blood Transfusion, The Sixth Medical Center of PLA General Hospital, Beijing, PR China
| | - Chengwen Cui
- Department of Rehabilitation, Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, PR China
| |
Collapse
|
2
|
Sears TK, Wang W, Drumm M, Unruh D, McCord M, Horbinski C. F3 Expression Drives Sensitivity to the Antibody-Drug Conjugate Tisotumab Vedotin in Glioblastoma. Cancers (Basel) 2025; 17:834. [PMID: 40075681 PMCID: PMC11898980 DOI: 10.3390/cancers17050834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES The gene F3, encoding Tissue Factor (TF), is expressed in many cancers and contributes to their malignancy. Among adult-type diffuse gliomas, IDH1/2 wild-type (IDHwt) glioblastomas (GBM) express more TF than IDH1/2 mutant (IDHmut) gliomas. Tisotumab vedotin (TisVed), an anti-TF antibody conjugated to monomethyl auristatin E, is a therapeutic designed to target cells expressing TF. We therefore sought to determine the therapeutic potential of TisVed in IDHwt vs. IDHmut gliomas. METHODS We treated IDHwt and IDHmut patient-derived glioma cells with control IgG, unconjugated tisotumab (Tis), or TisVed in vitro, followed by cell viability assays and the assessment of TF signaling. We tested Tis and TisVed in mice intracranially engrafted with patient-derived IDHwt and IDHmut gliomas and mice flank engrafted with IDHwt GBM. RESULTS TisVed was more active against cultured IDHwt GBM cells than IDHmut glioma cells. This activity was increased by the daily washout of soluble TF secreted by IDHwt GBM cells. Unconjugated Tis had less effect than TisVed, and TF signaling was minimally inhibited. TisVed extended the survival of mice intracranially engrafted with IDHwt GBM (p = 0.006), but not mice with IDHmut glioma (p = 0.88). TisVed also reduced the growth of IDHwt GBM flank xenografts. Tis alone had no antitumor effect in either setting. Notably, both TisVed and Tis were associated with hemorrhage in flank tumors. CONCLUSIONS TisVed targets high-TF-expressing IDHwt GBM, but not low-TF-expressing IDHmut glioma. This is predominately through the vedotin conjugate rather than inhibition of TF signaling. Though the effect size is modest, TisVed shows anticancer effects against IDHwt GBM. However, there could be complications related to hemostasis and hemorrhage.
Collapse
Affiliation(s)
- Thomas K. Sears
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (T.K.S.); (W.W.); (M.D.)
| | - Wenxia Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (T.K.S.); (W.W.); (M.D.)
| | - Michael Drumm
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (T.K.S.); (W.W.); (M.D.)
| | | | - Matthew McCord
- Department of Pathology, Division of Neuropathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (T.K.S.); (W.W.); (M.D.)
- Department of Pathology, Division of Neuropathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
3
|
Takao S, Fukushima H, Furusawa A, Kato T, Okuyama S, Kano M, Yamamoto H, Suzuki M, Kano M, Choyke PL, Kobayashi H. Tissue factor targeted near-infrared photoimmunotherapy: a versatile therapeutic approach for malignancies. Cancer Immunol Immunother 2025; 74:48. [PMID: 39751657 PMCID: PMC11699179 DOI: 10.1007/s00262-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer. Herein, we developed and tested a TF-targeted near-infrared photoimmunotherapy (NIR-PIT) as a potential treatment for several types of cancer. Tisotumab, a TF antibody, was conjugated to IR700. The efficacy of TF-targeted NIR-PIT was investigated using multiple cancer cell lines (A431; epidermoid carcinoma, HPAF-II; pancreatic adenocarcinoma, HSC-2; oral carcinoma, HT1376-luc; bladder carcinoma, MDAMB231; breast adenocarcinoma, and SKOV3-luc; ovarian serous cystadenocarcinoma) in vitro. In vivo, the efficacy of TF-targeted NIR-PIT was evaluated in HPAF-II and A431 xenograft mouse models. Pathologic changes in these tumors after NIR-PIT were evaluated in these tumor models. All cancer lines demonstrated TF expression in vitro and in vivo. Additionally, TF expression was documented to localize to cancer cells in tumors. In vitro, TF-targeted NIR-PIT caused cell death in a light dose-dependent manner. In vivo, TF-targeted NIR-PIT suppressed tumor growth and improved survival rates compared to controls. Furthermore, in vivo NIR-PIT showed histological signs of cancer cell damage, such as cytoplasmic vacuolation, nuclear dysmorphism, and extracellular leakage of LDHA consistent with cell death. In conclusion, TF-targeted NIR-PIT holds promise as a treatment for multiple cancer models expressing TF, spanning multiple cancer types.
Collapse
Affiliation(s)
- Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Motofumi Suzuki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Miyu Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Mihaylova R, Momekova D, Elincheva V, Momekov G. Immunoconjugates as an Efficient Platform for Drug Delivery: A Resurgence of Natural Products in Targeted Antitumor Therapy. Pharmaceuticals (Basel) 2024; 17:1701. [PMID: 39770542 PMCID: PMC11677665 DOI: 10.3390/ph17121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The present review provides a detailed and comprehensive discussion on antibody-drug conjugates (ADCs) as an evolving new modality in the current therapeutic landscape of malignant diseases. The principle concepts of targeted delivery of highly toxic agents forsaken as stand-alone drugs are examined in detail, along with the biochemical and technological tools for their successful implementation. An extensive analysis of ADCs' major components is conducted in parallel with their function and impact on the stability, efficacy, safety, and resistance profiles of the immunoconjugates. The scope of the article covers the major classes of currently validated natural compounds used as payloads, with an emphasis on their structural and mechanistic features, natural origin, and distribution. Future perspectives in ADCs' design are thoroughly explored, addressing their inherent or emerging challenges and limitations. The survey also provides a comprehensive overview of the molecular rationale for active tumor targeting of ADC-based platforms, exploring the cellular biology and clinical relevance of validated tumor markers used as a "homing" mechanism in both hematological and solid tumor malignancies.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| | - Denitsa Momekova
- Department “Pharmaceutical Technology and Biopharmaceutics”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Viktoria Elincheva
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| | - Georgi Momekov
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| |
Collapse
|
5
|
Calì B, Troiani M, Bressan S, Attanasio G, Merler S, Moscarda V, Mosole S, Ricci E, Guo C, Yuan W, Gallagher L, Lundberg A, Bernett I, Figueiredo I, Arzola RA, Abreut EB, D'Ambrosio M, Bancaro N, Brina D, Zumerle S, Pasquini E, Maddalena M, Lai P, Colucci M, Pernigoni N, Rinaldi A, Minardi D, Morlacco A, Moro FD, Sabbadin M, Galuppini F, Fassan M, Rüschoff JH, Moch H, Rescigno P, Francini E, Saieva C, Modesti M, Theurillat JP, Gillessen S, Wilgenbus P, Graf C, Ruf W, de Bono J, Alimonti A. Coagulation factor X promotes resistance to androgen-deprivation therapy in prostate cancer. Cancer Cell 2024; 42:1676-1692.e11. [PMID: 39303726 DOI: 10.1016/j.ccell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Although hypercoagulability is commonly associated with malignancies, whether coagulation factors directly affect tumor cell proliferation remains unclear. Herein, by performing single-cell RNA sequencing (scRNA-seq) of the prostate tumor microenvironment (TME) of mouse models of castration-resistant prostate cancer (CRPC), we report that immunosuppressive neutrophils (PMN-MDSCs) are a key extra-hepatic source of coagulation factor X (FX). FX activation within the TME enhances androgen-independent tumor growth by activating the protease-activated receptor 2 (PAR2) and the phosphorylation of ERK1/2 in tumor cells. Genetic and pharmacological inhibition of factor Xa (FXa) antagonizes the oncogenic activity of PMN-MDSCs, reduces tumor progression, and synergizes with enzalutamide therapy. Intriguingly, F10high PMN-MDSCs express the surface marker CD84 and CD84 ligation enhances F10 expression. Elevated levels of FX, CD84, and PAR2 in prostate tumors associate with worse survival in CRPC patients. This study provides evidence that FXa directly promotes cancer and highlights additional targets for PMN-MDSCs for cancer therapies.
Collapse
Affiliation(s)
- Bianca Calì
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silvia Bressan
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Merler
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Viola Moscarda
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Simone Mosole
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Elena Ricci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Christina Guo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Wei Yuan
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Lewis Gallagher
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Arian Lundberg
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ilona Bernett
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ines Figueiredo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Ernesto Bermudez Abreut
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Zumerle
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Ping Lai
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Manuel Colucci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Davide Minardi
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Alessandro Morlacco
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Fabrizio Dal Moro
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | | | - Edoardo Francini
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit - ISPRO, 50139 Florence, Italy
| | - Mikol Modesti
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silke Gillessen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Petra Wilgenbus
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
6
|
Mueller C, Davis JB, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research: a 2024 update. Expert Rev Proteomics 2024; 21:401-416. [PMID: 39474929 DOI: 10.1080/14789450.2024.2423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Breast cancer subtyping is used clinically for diagnosis, prognosis, and treatment decisions. Subtypes are categorized by cell of origin, histomorphology, gene expression signatures, hormone receptor status, and/or protein levels. Categorizing breast cancer based on gene expression signatures aids in assessing a patient's recurrence risk. Protein biomarkers, on the other hand, provide functional data for selecting therapies for primary and recurrent tumors. We provide an update on protein biomarkers in breast cancer subtypes and their application in prognosis and therapy selection. AREAS COVERED Protein pathways in breast cancer subtypes are reviewed in the context of current protein-targeted treatment options. PubMed, Science Direct, Scopus, and Cochrane Library were searched for relevant studies between 2017 and 17 August 2024. EXPERT OPINION Post-translationally modified proteins and their unmodified counterparts have become clinically useful biomarkers for defining breast cancer subtypes from a therapy perspective. Tissue heterogeneity influences treatment outcomes and disease recurrence. Spatial profiling has revealed complex cellular subpopulations within the breast tumor microenvironment. Deciphering the functional relationships between and within tumor clonal cell populations will further aid in defining breast cancer subtypes and create new treatment paradigms for recurrent, drug resistant, and metastatic disease.
Collapse
Affiliation(s)
- Claudius Mueller
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Justin B Davis
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
7
|
Park JC, Shin D. Current Landscape of Antibody-Drug Conjugate Development in Head and Neck Cancer. JCO Precis Oncol 2024; 8:e2400179. [PMID: 39151109 DOI: 10.1200/po.24.00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are fusions of therapeutic drugs and antibodies conjugated by a linker, designed to deliver a therapeutic payload to cells expressing the target antigen. By delivering the highly cytotoxic agent directly to cancer cells, ADCs are designed to enhance safety and broaden the therapeutic window. Recently, ADCs have demonstrated promising efficacy in various solid tumors and are rapidly expanding their indications. The prognosis of patients with advanced head and neck squamous cell carcinoma (HNSCC) remains poor, with no new therapeutics since the advent of anti-PD-1 antibodies in 2016, highlighting a critical need for innovative therapies. Recent preliminary results suggest that ADCs could be promising treatment options for HNSCC as they explore a variety of target antigens, payloads, and linkers. However, for successful adaptation of ADCs in the treatment of HNSCC, addressing key challenges such as payload toxicities, antigen heterogeneity, and adaptive resistance will be essential. Current research focused on new ADC structures, including multispecific antibodies and noncytotoxic payloads, and diverse combination approaches, show promise for future advancements.
Collapse
Affiliation(s)
- Jong Chul Park
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Donghoon Shin
- MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA
| |
Collapse
|
8
|
Udvorková N, Fekiačová A, Majtánová K, Mego M, Kučerová L. Antibody-drug conjugates as a novel therapeutic modality to treat recurrent refractory germ cell tumors. Am J Physiol Cell Physiol 2024; 327:C362-C371. [PMID: 38912730 DOI: 10.1152/ajpcell.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
This review provides a rationale for using the Food and Drug Administration (FDA)-approved antibody-drug conjugates (ADCs) for implementing as therapy in recurrent refractory germ cell tumors similar to their position in the treatment of other types of chemoresistant solid tumors. Germ cell tumors (GCTs) originate from germ cells; they most frequently develop in ovaries or in the testes, while being the most common type of malignancy in young men. GCTs are very sensitive to cisplatin-based chemotherapy, but therapeutic resistance occurs in a considerable number of cases, which is associated with disease recurrence and poor patient prognosis. ADCs are a novel type of targeted antitumor agents that combine tumor antigen-specific monoclonal antibodies with chemically linked chemotherapeutic drugs (payload) exerting a cytotoxic effect. Several FDA-approved ADCs use as targeting moieties the antigens that are also detected in the GCTs, offering a benefit of this type of targeted therapy even for patients with relapsed/refractory testicular GCTs (rrTGCT) unresponsive to standard chemotherapy.
Collapse
Affiliation(s)
- Natália Udvorková
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Fekiačová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Majtánová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Lucia Kučerová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| |
Collapse
|
9
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Plasma microRNA Environment Linked to Tissue Factor Pathway and Cancer-Associated Thrombosis: Prognostic Significance in Ovarian Cancer. Biomolecules 2024; 14:928. [PMID: 39199316 PMCID: PMC11352941 DOI: 10.3390/biom14080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Ovarian cancer (OC) is a leading cause of death among gynaecological malignancies. The haemostatic system, which controls blood flow and prevents clotting disorders, paradoxically drives OC progression while increasing the risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) have emerged as crucial in understanding VTE pathogenesis. Exploring the connection between cancer and thrombosis through these RNAs could lead to novel biomarkers of cancer-associated thrombosis (CAT) and OC, as well as potential therapeutic targets for tumour management. Thus, this study examined the impact of eight plasma miRNAs targeting the tissue factor (TF) coagulation pathway-miR-18a-5p, -19a-3p, -20a-5p, -23a-3p, -27a-3p, -103a-3p, -126-5p and -616-3p-in 55 OC patients. Briefly, VTE occurrence post-OC diagnosis was linked to shorter disease progression time (log-rank test, p = 0.024) and poorer overall survival (OS) (log-rank test, p < 0.001). High pre-chemotherapy levels of miR-20a-5p (targeting coagulation factor 3 (F3) and tissue factor pathway inhibitor 2 (TFPI2)) and miR-616-3p (targeting TFPI2) predicted VTE after OC diagnosis (χ2, p < 0.05). Regarding patients' prognosis regardless of VTE, miR-20a-5p independently predicted OC progression (adjusted hazard ratio (aHR) = 6.13, p = 0.005), while miR-616-3p significantly impacted patients' survival (aHR = 3.72, p = 0.020). Further investigation is warranted for their translation into clinical practice.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
10
|
Proulx-Rocray F, Soulières D. Emerging monoclonal antibody therapy for head and neck squamous cell carcinoma. Expert Opin Emerg Drugs 2024; 29:165-176. [PMID: 38616696 DOI: 10.1080/14728214.2024.2339906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing, particularly among younger populations. It is projected that the number of new cases will increase by almost 50% by 2040, with market revenues expected to triple in the same period. Despite the recent introduction of immune checkpoint inhibitors (ICIs) into the therapeutic armamentarium, the vast majority of patients with recurrent and/or metastatic (R/M) HNSCC fail to derive durable benefits from systemic therapy. AREAS COVERED This article aims to review the multiple monoclonal antibodies (mAbs) regimens currently under development, targeting various growth factors, immune checkpoints, immune costimulatory receptors, and more. EXPERT OPINION So far, the combination of anti-EGFR and ICI appears to be the most promising, especially in HPV-negative patients. It will be interesting to confirm whether the arrival of antibody-drug conjugates and bispecific mAb can surpass the efficacy of anti-EGFR, as they are also being tested in combination with ICI. Furthermore, we believe that immune costimulatory agonists and various ICIs combination are worth monitoring, despite some initial setbacks.
Collapse
Affiliation(s)
- Francis Proulx-Rocray
- Hematology and Medical Oncology Department, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Denis Soulières
- Hematology and Medical Oncology Department, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
11
|
Bakema JE, Stigter-van Walsum M, Harris JR, Ganzevles SH, Muthuswamy A, Houtkamp M, Plantinga TS, Bloemena E, Brakenhoff RH, Breij ECW, van de Ven R. An Antibody-Drug Conjugate Directed to Tissue Factor Shows Preclinical Antitumor Activity in Head and Neck Cancer as a Single Agent and in Combination with Chemoradiotherapy. Mol Cancer Ther 2024; 23:187-198. [PMID: 37828725 DOI: 10.1158/1535-7163.mct-23-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type that arises in the squamous epithelial cells lining the mucosal surfaces of the upper aerodigestive tract. Long-term survival of patients with advanced disease stage remains disappointing with current treatment options. We show that tissue factor is abundantly expressed on patient-derived HNSCC cell lines, xenograft tumor material, and tumor biopsies from patients with HNSCC. Tisotumab vedotin (TV) is an antibody-drug conjugate (ADC) directed to tissue factor, a protein expressed in many solid tumors. HNSCC cells and xenograft tumors were efficiently eliminated in vitro and in vivo with TV-monotherapy compared with treatment with a control antibody conjugated to monomethyl auristatin E (MMAE). Antitumor activity of TV was also tested in vivo in combination with chemoradiotherapy, standard of care for patients with advanced stage HNSCC tumors outside the oral cavity. Preclinical studies showed that by adding TV to chemoradiotherapy, survival was markedly improved, and TV, not radiotherapy or chemotherapy, was the main driver of antitumor activity. Interestingly, TV-induced cell death in xenograft tumors showed an influx of macrophages indicative of a potential immune-mediated mode-of-action. In conclusion, on the basis of these preclinical data, TV may be a novel treatment modality for patients suffering from head and neck cancer and is hypothesized to improve efficacy of chemoradiotherapy. SIGNIFICANCE This work shows preclinical in vitro and in vivo antitumor activity of the antibody-drug conjugate Tisotumab vedotin in head and neck cancer models, and enhanced activity in combination with chemoradiotherapy, supporting further clinical development for this cancer type.
Collapse
Affiliation(s)
- Jantine E Bakema
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Genmab, Utrecht, The Netherlands
| | - Marijke Stigter-van Walsum
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Sonja H Ganzevles
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | | | | | | | - Elisabeth Bloemena
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Rieneke van de Ven
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Saleh Alanazi SH, Farooq Khan M, Alazami AM, Baabbad A, Ahmed Wadaan M. Calotropis procera: A double edged sword against glioblastoma, inhibiting glioblastoma cell line growth by targeting histone deacetylases (HDAC) and angiogenesis. Heliyon 2024; 10:e24406. [PMID: 38304784 PMCID: PMC10831610 DOI: 10.1016/j.heliyon.2024.e24406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Despite substantial investments in anti-glioblastoma (GBM) drug discovery over the last decade, progress is limited to preclinical stages, with clinical studies frequently encountering obstacles. Angiogenic and histone deacetylase inhibitors (HDACi) have shown profound results in pre-clinical studies. Investigating a multicomponent anti-cancer remedy that disrupts the tumor angiogenic blood vessels and simultaneously disrupts HDACs, while inducing minimal side effects, is critically needed. The crude extracts derived from medicinal plants serve as a renewable reservoir of anti-tumor drugs, exhibiting reduced toxicity compared to chemically synthesized formulations. Calotropis procera is a traditional medicinal plant, and its anticancer potential against many cancer cell lines has been reported, however its antiangiogenic and HDAC inhibitory action is largely unknown. The anticancer activity of methanol leaf extract of C. procera was tested in three types of human glioblastoma cell lines. Wild-type and transgenic zebrafish embryos were used to evaluate developmental toxicity and angiogenic activity. A human angiogenic antibody array was used to profile angiogenic proteins in the U251 GM cell line. A real-time reverse transcriptase polymerase chain reaction (RT PCR) assay was used to detect the differential expression of eleven HDAC genes in U251 cells treated with C. procera extract. The extract significantly reduced the proliferation of all three types of GBM cell lines and the cytotoxicity was found to be more pronounced in U251 GM cells, with an IC50 value of 2.63 ± 0.23 μg/ml, possibly by arresting the cell cycle at the G2/M transition. The extract did not exhibit toxic effects in zebrafish embryos, even at concentrations as high as 1000 μg/ml. The extract also inhibited angiogenic blood vessel formation in the transgenic zebrafish model in a dose-dependent manner. The results from the angiogenic antibody array have suggested novel angiogenesis targets that can be utilized to treat GBM. Real-time RT PCR analysis has shown that C. procrea extract caused an upregulation of HDAC5, 7, and 10, while the mRNA of HDAC1, 2, 3 and 8 (Class I HDACs), and HDAC4, 6, and 9 (Class II) were downregulated in U251 GM cells. The cytotoxicity of the C. procera extract on GBM cell lines could be due to its dual action by regulation of both tumor angiogenesis and histone deacetylases enzymes. Through this study, the C. procera leaf extract has been suggested as an effective remedy to treat GBM with minimal toxicity. In addition, various novel angiogenic and HDAC targets has been identified which could be helpful in designing better therapeutic strategies to manage glioblastoma multiforme in human patients.
Collapse
Affiliation(s)
- Shamsa Hilal Saleh Alanazi
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Muhammad Farooq Khan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Anas M. Alazami
- Translational Genomics Department, Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Almohannad Baabbad
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad Ahmed Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Vergote I, Van Nieuwenhuysen E, O'Cearbhaill RE, Westermann A, Lorusso D, Ghamande S, Collins DC, Banerjee S, Mathews CA, Gennigens C, Cibula D, Tewari KS, Madsen K, Köse F, Jackson AL, Boere IA, Scambia G, Randall LM, Sadozye A, Baurain JF, Gort E, Zikán M, Denys HG, Ottevanger N, Forget F, Mondrup Andreassen C, Eaton L, Chisamore MJ, Viana Nicacio L, Soumaoro I, Monk BJ. Tisotumab Vedotin in Combination With Carboplatin, Pembrolizumab, or Bevacizumab in Recurrent or Metastatic Cervical Cancer: Results From the innovaTV 205/GOG-3024/ENGOT-cx8 Study. J Clin Oncol 2023; 41:5536-5549. [PMID: 37651655 PMCID: PMC10730069 DOI: 10.1200/jco.23.00720] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE Tissue factor is highly expressed in cervical carcinoma and can be targeted by tisotumab vedotin (TV), an antibody-drug conjugate. This phase Ib/II study evaluated TV in combination with bevacizumab, pembrolizumab, or carboplatin for recurrent or metastatic cervical cancer (r/mCC). METHODS This open-label, multicenter study (ClinicalTrials.gov identifier: NCT03786081) included dose-escalation arms that assessed dose-limiting toxicities (DLTs) and identified the recommended phase II dose (RP2D) of TV in combination with bevacizumab (arm A), pembrolizumab (arm B), or carboplatin (arm C). The dose-expansion arms evaluated TV antitumor activity and safety at RP2D in combination with carboplatin as first-line (1L) treatment (arm D) or with pembrolizumab as 1L (arm E) or second-/third-line (2L/3L) treatment (arm F). The primary end point of dose expansion was objective response rate (ORR). RESULTS A total of 142 patients were enrolled. In dose escalation (n = 41), no DLTs were observed; the RP2D was TV 2 mg/kg plus bevacizumab 15 mg/kg on day 1 once every 3 weeks, pembrolizumab 200 mg on day 1 once every 3 weeks, or carboplatin AUC 5 on day 1 once every 3 weeks. In dose expansion (n = 101), the ORR was 54.5% (n/N, 18/33; 95% CI, 36.4 to 71.9) with 1L TV + carboplatin (arm D), 40.6% (n/N, 13/32; 95% CI, 23.7 to 59.4) with 1L TV + pembrolizumab (arm E), and 35.3% (12/34; 19.7 to 53.5) with 2L/3L TV + pembrolizumab (arm F). The median duration of response was 8.6 months, not reached, and 14.1 months, in arms D, E, and F, respectively. Grade ≥3 adverse events (≥15%) were anemia, diarrhea, nausea, and thrombocytopenia in arm D and anemia in arm F (none ≥15%, arm E). CONCLUSION TV in combination with bevacizumab, carboplatin, or pembrolizumab demonstrated manageable safety and encouraging antitumor activity in treatment-naive and previously treated r/mCC.
Collapse
Affiliation(s)
- Ignace Vergote
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven Cancer Institute, Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven Cancer Institute, Leuven, Belgium
| | | | - Anneke Westermann
- Dutch Gynaecological Oncology Group, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Domenica Lorusso
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Sharad Ghamande
- Department of Obstetrics and Gynecology, Augusta University, Augusta, GA
| | - Dearbhaile C. Collins
- Department of Medical Oncology, Cancer Trials Ireland, Cork University Hospital, Cork, Ireland
| | - Susana Banerjee
- Royal Marsden National Health Service Foundation Trust, Institute of Cancer Research, London, United Kingdom
| | - Cara A. Mathews
- Program in Women's Oncology, Women & Infants Hospital, Legorreta Cancer Center at Alpert Medical School of Brown University, Providence, RI
| | | | - David Cibula
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Kristine Madsen
- Centre for Cancer and Organ Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Amanda L. Jackson
- Department of Obstetrics and Gynecology, University of Cincinnati Cancer Center, Cincinnati, OH
| | | | - Giovanni Scambia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Azmat Sadozye
- Beatson West of Scotland Cancer Centre, Gartnavel General Hospital, Glasgow, United Kingdom
| | - Jean-François Baurain
- Cliniques Universitaires Saint-Luc and Université Catholique de Louvain and BGOG, Brussels, Belgium
| | - Eelke Gort
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michal Zikán
- First Faculty of Medicine, Bulovka University Hospital, Charles University, Prague, Czech Republic
| | | | | | - Frédéric Forget
- BGOG, Centre Hospitalier de l’Ardenne—Site de Libramont, Libramont-Chevigny, Belgium
| | | | | | | | | | | | - Bradley J. Monk
- HonorHealth Research Institute, University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, AZ
| |
Collapse
|
14
|
Muse O, Patell R, Peters CG, Yang M, El-Darzi E, Schulman S, Falanga A, Marchetti M, Russo L, Zwicker JI, Flaumenhaft R. The unfolded protein response links ER stress to cancer-associated thrombosis. JCI Insight 2023; 8:e170148. [PMID: 37651191 PMCID: PMC10629814 DOI: 10.1172/jci.insight.170148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombosis is a common complication of advanced cancer, yet the cellular mechanisms linking malignancy to thrombosis are poorly understood. The unfolded protein response (UPR) is an ER stress response associated with advanced cancers. A proteomic evaluation of plasma from patients with gastric and non-small cell lung cancer who were monitored prospectively for venous thromboembolism demonstrated increased levels of UPR-related markers in plasma of patients who developed clots compared with those who did not. Release of procoagulant activity into supernatants of gastric, lung, and pancreatic cancer cells was enhanced by UPR induction and blocked by antagonists of the UPR receptors inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Release of extracellular vesicles bearing tissue factor (EVTFs) from pancreatic cancer cells was inhibited by siRNA-mediated knockdown of IRE1α/XBP1 or PERK pathways. Induction of UPR did not increase tissue factor (TF) synthesis, but rather stimulated localization of TF to the cell surface. UPR-induced TF delivery to EVTFs was inhibited by ADP-ribosylation factor 1 knockdown or GBF1 antagonism, verifying the role of vesicular trafficking. Our findings show that UPR activation resulted in increased vesicular trafficking leading to release of prothrombotic EVTFs, thus providing a mechanistic link between ER stress and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Oluwatoyosi Muse
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|