1
|
Di Pede G, Mena P, Bresciani L, Achour M, Lamuela-Raventós RM, Estruch R, Landberg R, Kulling SE, Wishart D, Rodriguez-Mateos A, Clifford MN, Crozier A, Manach C, Del Rio D. A Systematic Review and Comprehensive Evaluation of Human Intervention Studies to Unravel the Bioavailability of Hydroxycinnamic Acids. Antioxid Redox Signal 2024; 40:510-541. [PMID: 37382416 PMCID: PMC10960166 DOI: 10.1089/ars.2023.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Significance: Hydroxycinnamic acids (HCAs) are the main phenolic acids in the western diet. Harmonizing the available information on the absorption, distribution, metabolism, and excretion (ADME) of HCAs is fundamental to unraveling the compounds responsible for their health effects. This work systematically assessed pharmacokinetics, including urinary recovery, and bioavailability of HCAs and their metabolites, based on literature reports. Recent Advances: Forty-seven intervention studies with coffee, berries, herbs, cereals, tomato, orange, grape products, and pure compounds, as well as other sources yielding HCA metabolites, were included. Up to 105 HCA metabolites were collected, mainly acyl-quinic and C6-C3 cinnamic acids. C6-C3 cinnamic acids, such as caffeic and ferulic acid, reached the highest blood concentrations (maximum plasma concentration [Cmax] = 423 nM), with time to reach Cmax (Tmax) values ranging from 2.7 to 4.2 h. These compounds were excreted in urine in higher amounts than their phenylpropanoic acid derivatives (4% and 1% of intake, respectively), but both in a lower percentage than hydroxybenzene catabolites (11%). Data accounted for 16 and 18 main urinary and blood HCA metabolites, which were moderately bioavailable in humans (collectively 25%). Critical Issues: A relevant variability emerged. It was not possible to unequivocally assess the bioavailability of HCAs from each ingested source, and data from some plant based-foods were absent or inconsistent. Future Directions: A comprehensive study investigating the ADME of HCAs derived from their most important dietary sources is urgently required. Eight key metabolites were identified and reached interesting plasma Cmax concentrations and urinary recoveries, opening up new perspectives to evaluate their bioactivity at physiological concentrations. Antioxid. Redox Signal. 40, 510-541.
Collapse
Affiliation(s)
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Mariem Achour
- Human Nutrition Unit, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramon Estruch
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sabine E. Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - David Wishart
- Department of Biological Sciences and University of Alberta, Edmonton, Canada
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, United Kingdom
| | - Michael N. Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Nutrition Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Australia
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Claudine Manach
- Human Nutrition Unit, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E, Tassotti M, Mena P, Del Rio D, Palestini P. Study of the Antioxidant Effects of Coffee Phenolic Metabolites on C6 Glioma Cells Exposed to Diesel Exhaust Particles. Antioxidants (Basel) 2021; 10:antiox10081169. [PMID: 34439417 PMCID: PMC8388867 DOI: 10.3390/antiox10081169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023] Open
Abstract
The contributing role of environmental factors to the development of neurodegenerative diseases has become increasingly evident. Here, we report that exposure of C6 glioma cells to diesel exhaust particles (DEPs), a major constituent of urban air pollution, causes intracellular reactive oxygen species (ROS) production. In this scenario, we suggest employing the possible protective role that coffee phenolic metabolites may have. Coffee is a commonly consumed hot beverage and a major contributor to the dietary intake of (poly) phenols. Taking into account physiological concentrations, we analysed the effects of two different coffee phenolic metabolites mixes consisting of compounds derived from bacterial metabolization reactions or phase II conjugations, as well as caffeic acid. The results showed that these mixes were able to counteract DEP-induced oxidative stress. The cellular components mediating the downregulation of ROS included extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and uncoupling protein 2 (UCP2). Contrary to coffee phenolic metabolites, the treatment with N-acetylcysteine (NAC), a known antioxidant, was found to be ineffective in preventing the DEP exposure oxidant effect. These results revealed that coffee phenolic metabolites could be promising candidates to protect against some adverse health effects of daily exposure to air pollution.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43121 Parma, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
- Correspondence:
| |
Collapse
|
3
|
Bosso H, Barbalho SM, de Alvares Goulart R, Otoboni AMMB. Green coffee: economic relevance and a systematic review of the effects on human health. Crit Rev Food Sci Nutr 2021; 63:394-410. [PMID: 34236263 DOI: 10.1080/10408398.2021.1948817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coffee is probably the most popular beverage after water and is an important component in diet and health since its consumption is high worldwide. Globally, it is the most relevant food commodity being just behind crude oil. Besides its pleasant flavor, it is an antioxidant source due to polyphenols, which are protective compounds against several diseases. This study aimed to evaluate the economic relevance and perform a systematic review of green coffee's effects on human health. Databases such as MEDLINE-PubMed, EMBASE, COCHRANE, and GOOGLE SCHOLAR were searched, and PRISMA guidelines were followed. Green coffee is considered a novel food product because consumers usually consume only roasted coffee. It can be marketed as such or as an extract. Due to the content of bioactive compounds, which are partially lost during the roasting process, the extracts are usually marketed concerning the potential regarding health effects. Green coffee can be used as dietary supplements, cosmetics, and pharmaceuticals, as a source of antioxidants. It can benefit human health, such as improvement in blood pressure, plasma lipids, and body weight (thus contributing to the improvement of risk components of Metabolic Syndrome). Moreover, benefits for cognitive functions may also be included.
Collapse
Affiliation(s)
- Henrique Bosso
- Medical school of São José do Rio Preto (FAMERP), Sao Jose do Rio Preto, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil.,Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, São Paulo, Brazil.,School of Food and Technology of Marilia (FATEC), Marilia, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | | |
Collapse
|
4
|
Yang H, Yin Q, Huang L, Zhang M, Zhang X, Sun Q, Liu X, Wang Q, Yang X, Tan L, Ye M, Liu J. The Bioequivalence of Emulsified Isoflurane With a New Formulation of Emulsion: A Single-Center, Single-Dose, Double-Blinded, Randomized, Two-Period Crossover Study. Front Pharmacol 2021; 12:626307. [PMID: 33776768 PMCID: PMC7988084 DOI: 10.3389/fphar.2021.626307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Emulsified isoflurane is a novel intravenous general anesthetic obtained by encapsulating isoflurane molecules into emulsion. The formulation of emulsion has been improved according to the latest regulations of the China Food and Drug Administration. This study was designed to compare the bioequivalence of the new and previous formulation emulsion of isoflurane. Methods: In a single-center, single-dose, double-blinded, randomized, two-period crossover study, healthy volunteers received intravenous injection of 30 mg/kg of isoflurane with either previous formulation of emulsion isoflurane (PFEI) or new formulation of emulsion isoflurane (NFEI). Arterial and venous blood samples were obtained for geometric mean test/reference ratios of Cmax, AUC0-t, and AUC0-∞, as well as their 90% confidence interval (CI90) as the primary outcome. The secondary outcomes were safety measurements such as vital signs, 12-lead electrocardiography, adverse effects, and laboratory tests; and anesthesia efficacy was assessed by Modified Observer’s Assessment of Alertness/Sedation (MOAA/S) score, bispectral index (BIS), and loss/recovery of eyelash reflex. Results: 24 subjects were eligible, of which 21 completed the whole experiment (NFEI n = 21, PFEI n = 23). Arterial geometric mean test/reference ratios of Cmax, AUC0-t, and AUC0-∞ were 104.50% (CI90 92.81%–117.65%), 108.23% (94.51%–123.96%), and 106.53% (93.94%∼120.80%), respectively. The most commonly seen adverse effects for NFEI and PFEI were injection pain (38.1% vs. 34.8%), hypotension (19.0% vs. 13.0%), apnea (14.3% vs. 17.4%), and upper airway obstruction (14.3% vs. 13.0%). No severe adverse effect was observed. The effectiveness of general anesthesia was similar between the two formulations. Conclusion: The CI90 of Cmax, AUC0-t, AUC0-∞, NFEI, and PFEI were within the range of 80%–125%, suggesting bioequivalence between NFEI and PFEI. The safety and anesthesia effectiveness were also similar.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qinqin Yin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Luying Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhang
- Clinical Research Center, Yichang Humanwell Pharmaceutical CO., LTD, Yichang, China
| | - Xinxin Zhang
- Clinical Research Center, Yichang Humanwell Pharmaceutical CO., LTD, Yichang, China
| | - Qirong Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewei Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingcan Tan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Ye
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|