1
|
Kitzmiller NL, Wolf ME, Turney JM, Schaefer HF. The HOX⋯SO 2 (X=F, Cl, Br, I) Binary Complexes: Implications for Atmospheric Chemistry. Chemphyschem 2020; 22:112-126. [PMID: 33090675 DOI: 10.1002/cphc.202000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Indexed: 11/07/2022]
Abstract
Sulfur dioxide and hypohalous acids (HOX, X=F, Cl, Br, I) are ubiquitous molecules in the atmosphere that are central to important processes like seasonal ozone depletion, acid rain, and cloud nucleation. We present the first theoretical examination of the HOX⋯SO2 binary complexes and the associated trends due to halogen substitution. Reliable geometries were optimized at the CCSD(T)/aug-cc-pV(T+d)Z level of theory for HOF and HOCl complexes. The HOBr and HOI complexes were optimized at the CCSD(T)/aug-cc-pV(D+d)Z level of theory with the exception of the Br and I atoms which were modeled with an aug-cc-pwCVDZ-PP pseudopotential. 27 HOX⋯SO2 complexes were characterized and the focal point method was employed to produce CCSDT(Q)/CBS interaction energies. Natural Bond Orbital analysis and Symmetry Adapted Perturbation Theory were used to classify the nature of each principle interaction. The interaction energies of all HOX⋯SO2 complexes in this study ranged from 1.35 to 3.81 kcal mol-1 . The single-interaction hydrogen bonded complexes spanned a range of 2.62 to 3.07 kcal mol-1 , while the single-interaction halogen bonded complexes were far more sensitive to halogen substitution ranging from 1.35 to 3.06 kcal mol-1 , indicating that the two types of interactions are extremely competitive for heavier halogens. Our results provide insight into the interactions between HOX and SO2 which may guide further research of related systems.
Collapse
Affiliation(s)
- Nathaniel L Kitzmiller
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Mark E Wolf
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Justin M Turney
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
2
|
Picaud S, Jedlovszky P. Molecular-scale simulations of organic compounds on ice: application to atmospheric and interstellar sciences. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2018.1502428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sylvain Picaud
- Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, Besançon, France
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Eger, Hungary
| |
Collapse
|
3
|
Cyran JD, Backus EHG, van Zadel MJ, Bonn M. Comparative Adsorption of Acetone on Water and Ice Surfaces. Angew Chem Int Ed Engl 2019; 58:3620-3624. [PMID: 30601600 PMCID: PMC6767755 DOI: 10.1002/anie.201813517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 12/05/2022]
Abstract
Small organic molecules on ice and water surfaces are ubiquitous in nature and play a crucial role in many environmentally relevant processes. Herein, we combine surface‐specific vibrational spectroscopy and a controllable flow cell apparatus to investigate the molecular adsorption of acetone onto the basal plane of single‐crystalline hexagonal ice with a large surface area. By comparing the adsorption of acetone on the ice/air and the water/air interface, we observed two different types of acetone adsorption, as apparent from the different responses of both the free O−H and the hydrogen‐bonded network vibrations for ice and liquid water. Adsorption on ice occurs preferentially through interactions with the free OH group, while the interaction of acetone with the surface of liquid water appears less specific.
Collapse
Affiliation(s)
- Jenée D Cyran
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ellen H G Backus
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090, Vienna, Austria
| | - Marc-Jan van Zadel
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
4
|
Vergleichende Acetonadsorption an Wasser- und Eisoberflächen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Gordon BP, Moore FG, Scatena LF, Valley NA, Wren SN, Richmond GL. Model Behavior: Characterization of Hydroxyacetone at the Air-Water Interface Using Experimental and Computational Vibrational Sum Frequency Spectroscopy. J Phys Chem A 2018; 122:3837-3849. [PMID: 29608301 DOI: 10.1021/acs.jpca.8b01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Small atmospheric aldehydes and ketones are known to play a significant role in the formation of secondary organic aerosols (SOA). However, many of them are difficult to experimentally isolate, as they tend to form hydration and oligomer species. Hydroxyacetone (HA) is unusual in this class as it contributes to SOA while existing predominantly in its unhydrated monomeric form. This allows HA to serve as a valuable model system for similar secondary organic carbonyls. In this paper the surface behavior of HA at the air-water interface has been investigated using vibrational sum frequency (VSF) spectroscopy and Wilhelmy plate surface tensiometry in combination with computational molecular dynamics simulations and density functional theory calculations. The experimental results demonstrate that HA has a high degree of surface activity and is ordered at the interface. Furthermore, oriented water is observed at the interface, even at high HA concentrations. Spectral features also reveal the presence of both cis and trans HA conformers at the interface, in differing orientations. Molecular dynamics results indicate conformer dependent shifts in HA orientation between the subsurface (∼5 Å deep) and surface. Together, these results provide a picture of a highly dynamic, but statistically ordered, interface composed of multiple HA conformers with solvated water. These results have implications for HA's behavior in aqueous particles, which may affect its role in the atmosphere and SOA formation.
Collapse
Affiliation(s)
- Brittany P Gordon
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Frederick G Moore
- Department of Physics , Whitman College , Walla Walla , Washington 99362 , United States
| | - Lawrence F Scatena
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Nicholas A Valley
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Science and Mathematics , California Northstate University College of Health Sciences , Rancho Cordova , California 95670 , United States
| | - Sumi N Wren
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Air Quality Process Research , Environment and Climate Change Canada (ECCC) , Toronto , Ontario M3H 5T4 , Canada
| | - Geraldine L Richmond
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
6
|
Hudait A, Allen MT, Molinero V. Sink or Swim: Ions and Organics at the Ice–Air Interface. J Am Chem Soc 2017; 139:10095-10103. [DOI: 10.1021/jacs.7b05233] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Michael T. Allen
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
7
|
Radola B, Picaud S, Vardanega D, Jedlovszky P. Molecular Dynamics Simulations of the Interaction between Water Molecules and Aggregates of Acetic or Propionic Acid Molecules. J Phys Chem B 2015; 119:15662-74. [DOI: 10.1021/acs.jpcb.5b08110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bastien Radola
- Institut
UTINAM - UMR 6213, CNRS, Univ. Bourgogne Franche-Comté, F-25000 Besançon Cedex, France
| | - Sylvain Picaud
- Institut
UTINAM - UMR 6213, CNRS, Univ. Bourgogne Franche-Comté, F-25000 Besançon Cedex, France
| | - Delphine Vardanega
- Institut
UTINAM - UMR 6213, CNRS, Univ. Bourgogne Franche-Comté, F-25000 Besançon Cedex, France
- PhLAM - UMR8523,
CNRS, Univ. Lille 1, F-59655 Villeneuve d’Ascq, France
| | - Pál Jedlovszky
- Laboratory
of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter
stny, 1/a, H-1117 Budapest, Hungary
- HAS Research Group of Technical Analytical Chemistry, Szt. Gellért tér 4, H-1111 Budapest, Hungary
- EKF Department of Chemistry, Eszterházy tér 1, H-3300 Eger, Hungary
| |
Collapse
|
8
|
Vardanega D, Picaud S. Water and formic acid aggregates: A molecular dynamics study. J Chem Phys 2014; 141:104701. [DOI: 10.1063/1.4894658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Darvas M, Picaud S, Jedlovszky P. Molecular dynamics simulations of the water adsorption around malonic acid aerosol models. Phys Chem Chem Phys 2013; 15:10942-51. [DOI: 10.1039/c3cp50608h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Lasne J, Laffon C, Parent P. Interaction of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with the surface of water ice and HNO3·3H2O ice. Phys Chem Chem Phys 2012; 14:697-704. [DOI: 10.1039/c1cp21707k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|