1
|
Valioglu F, Valipour F, Atazadeh S, Hasansadeh M, Khosrowshahi ND, Nezamdoust FV, Mohammad-Jafarieh P, Rahbarghazi R, Mahdipour M. Recent advances in shape memory scaffolds and regenerative outcomes. Biomed Eng Lett 2024; 14:1279-1301. [PMID: 39465110 PMCID: PMC11502725 DOI: 10.1007/s13534-024-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
The advent of tissue engineering (TE) technologies has revolutionized human medicine over the last few decades. Despite splendid advances in the fabricating and development of different substrates for regenerative purposes, non-responsive static composites have been used to heal injured tissues. After being transplanted into the target sites, grafts will lose their original features, leading to a reduction in regenerative potential. Along with these statements, the use of shape memory polymers (SMPs), smart substrates with unique physicochemical properties, has been extended in different disciplines of regenerative medicine in recent years. These substrates are intelligent and they can easily change physicogeometry features such as stiffness, strain size, shape, etc. in response to external stimuli. It has been proposed that SMPs can easily acquire their original properties after deformation, even in the presence or absence of certain stimuli. It has been indicated that the application of distinct synthesis protocols is required to fabricate dynamically switchable surfaces with prominent cell-to-substrate interaction, resulting in better regulation of cell function, dynamic growth, and reparative mechanisms. Here, we aimed to scrutinize the prominent regenerative properties of SMPs in the TE and regenerative medicine fields. Whether and how SMPs can orchestrate certain cell behavior, with reconfigurable features and adaptability were discussed in detail.
Collapse
Affiliation(s)
- Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Fereshteh Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Atazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Maryam Hasansadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | | | - Fereshteh Vaziri Nezamdoust
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Mohammad-Jafarieh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Carbonell A, Izquierdo I, Guzmán Ríos DB, Norjmaa G, Ujaque G, Martínez-Martínez AJ, Pischel U. Synthesis, Characterization, and Photochemistry of a Ga 2L 3 Coordination Cage with Dithienylethene-Catecholate Ligands. Inorg Chem 2024; 63:19872-19884. [PMID: 39375865 PMCID: PMC11497204 DOI: 10.1021/acs.inorgchem.4c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Two new photoswitchable dithienylethene (DTE)-catechol ligands, specifically designed for group 13 metal coordination, were synthesized via Suzuki coupling reactions from a dichloro-DTE building block, each with varying longitudinal extensions. The shorter DTE-catechol ligand did not efficiently assemble with Ga3+ metal ions; however, elongation with a phenylene-amide spacer group enabled the successful formation of a novel triply DTE-functionalized coordination [Ga2L3]6- cage. This cage represents a unique example of integrating DTE photoswitches with main group metals in a supramolecular coordination framework. The [Ga2L3]6- cage was thoroughly characterized by NMR spectroscopy, including DOSY hydrodynamic volumetric analyses, high-resolution mass spectrometry, computational DFT, and photochemical analyses. The DFT studies highlighted the structural integrity and dynamic interplay within the helicate and mesocate isomeric forms of the [Ga2L3]6- cage upon photoswitching. While the free ligands exhibited all-photonic reversible switching at up to mM concentrations upon alternating irradiation at 365 and >495 nm, the [Ga2L3]6- cage demonstrated these capabilities under dilute μM conditions, albeit with lower efficiency and fatigue resistance. This behavior highlights the intricate relationship between rigid coordination with main group metals and the flexibility of the photoswitchable DTE ligands within the [Ga2L3]6- cage.
Collapse
Affiliation(s)
- Adrián Carbonell
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| | - Ignacio Izquierdo
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| | - David B. Guzmán Ríos
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| | - Gantulga Norjmaa
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universitat
Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Gregori Ujaque
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universitat
Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Antonio J. Martínez-Martínez
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| | - Uwe Pischel
- Center
for Research in Sustainable Chemistry (CIQSO) and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva 21071, Spain
| |
Collapse
|
3
|
Zhong W, Shang L. Photoswitching the fluorescence of nanoparticles for advanced optical applications. Chem Sci 2024; 15:6218-6228. [PMID: 38699274 PMCID: PMC11062085 DOI: 10.1039/d4sc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
The dynamic optical response properties and the distinct features of nanomaterials make photoswitchable fluorescent nanoparticles (PF NPs) attractive candidates for advanced optical applications. Over the past few decades, the design of PF NPs by coupling photochromic and fluorescent motifs at the nanoscale has been actively pursued, and substantial efforts have been made to exploit their potential applications. In this perspective, we critically summarize various design principles for fabricating these PF NPs. Then, we discuss their distinct optical properties from different aspects by highlighting the capability of NPs in fabricating new, robust photoswitch systems. Afterwards, we introduce the pivotal role of PF NPs in advanced optical applications, including sensing, anti-counterfeiting and imaging. Finally, current challenges and future development of PF NPs are briefly discussed.
Collapse
Affiliation(s)
- Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518057 China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University Chongqing 401135 China
| |
Collapse
|
4
|
Andréasson J, Pischel U. Light-stimulated molecular and supramolecular systems for information processing and beyond. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Liu WE, Quan M, Zhou H, Yang LP, Au-Yeung HY, Jiang W. Stabilization of the Closed-Ring Isomer of Spiropyran by Amide Naphthotube in Water and Its Application in Naked-Eye Detection of Toxic Paraoxon. Chemphyschem 2020; 21:2249-2253. [PMID: 32869462 DOI: 10.1002/cphc.202000703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/29/2020] [Indexed: 01/12/2023]
Abstract
The thermodynamically unstable, colourless closed-ring isomer of spiropyran can be stabilized in water by the anti-configurational isomer of amide naphthotube. The influence of the binding on the thermodynamics and kinetics of spiropyran have been studied. The complex was further used to prepare a test paper that allows naked-eye detection of toxic paraoxon.
Collapse
Affiliation(s)
- Wei-Er Liu
- Department of Chemistry, Hongkong University, Pokfulam Road, Hong Kong, China.,Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and, Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Mao Quan
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and, Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and, Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and, Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - H Y Au-Yeung
- Department of Chemistry, Hongkong University, Pokfulam Road, Hong Kong, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and, Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
6
|
Chernikova EY, Berdnikova DV, Peregudov AS, Fedorova OA, Fedorov YV. Encapsulation-Controlled Photoisomerization of a Styryl Derivative: Stereoselective Formation of the Anti Z-Isomer in the Cucurbit[7]uril Cavity. Chemphyschem 2020; 21:442-449. [PMID: 31863708 DOI: 10.1002/cphc.201901095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Indexed: 02/04/2023]
Abstract
The photochemical isomerization of a styrylpyridinium dye (SP) bearing an unsymmetrically attached benzo-15-crown-5 ether has been studied in aqueous solution in the absence and presence of cucurbit[7]uril (CB[7]). The detailed analysis of the UV/Vis and NMR spectra showes that the isomeric composition of the photostationary mixtures of SP can be modulated by the host-guest complexation with CB[7]. It was found that steric hindrance caused by encapsulation of SP in the host cavity induces the exclusive formation of the anti conformer of Z-SP in contrast with the mixture of both anti and syn conformers obtained during photoisomerization of the dye without CB[7]. Remarkably, the displacement of anti Z-SP from CB[7] does not lead to the transformation of the anti Z-isomer into the syn Z-isomer pointing out the conformational memory of the system. The results provide an interesting example of the supramolecular stereorecognition by the achiral CB[7] host.
Collapse
Affiliation(s)
- Ekaterina Y Chernikova
- Laboratory of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Science, Vavilova st. 28, 119991, Moscow, Russia
| | - Daria V Berdnikova
- Universität Siegen, Organische Chemie II, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Alexander S Peregudov
- Laboratory of Nuclear Magnetic Resonances, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Science, Vavilova st. 28, 119991, Moscow, Russia
| | - Olga A Fedorova
- Laboratory of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Science, Vavilova st. 28, 119991, Moscow, Russia
| | - Yuri V Fedorov
- Laboratory of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Science, Vavilova st. 28, 119991, Moscow, Russia
| |
Collapse
|
7
|
Zhang L, Deng Y, Tang Z, Zheng N, Zhang C, Xie C, Wu Z. One‐Pot Synthesis of Spiropyrans. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Yawen Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Zhenyu Tang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Ning Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Chenghao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Congxia Xie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P.R. China
| |
Collapse
|
8
|
Romero MA, Mateus P, Matos B, Acuña Á, García-Río L, Arteaga JF, Pischel U, Basílio N. Binding of Flavylium Ions to Sulfonatocalix[4]arene and Implication in the Photorelease of Biologically Relevant Guests in Water. J Org Chem 2019; 84:10852-10859. [DOI: 10.1021/acs.joc.9b01420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miguel A. Romero
- CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Pedro Mateus
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Beatriz Matos
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ángel Acuña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis García-Río
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús F. Arteaga
- CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Uwe Pischel
- CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Spiropyran as a potential molecular diagnostic tool for double-stranded RNA detection. BMC Biomed Eng 2019; 1:6. [PMID: 32903305 PMCID: PMC7421392 DOI: 10.1186/s42490-019-0008-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Long double-stranded RNAs (dsRNAs) are duplex RNAs that can induce immune response when present in mammalian cells. These RNAs are historically associated with viral replication, but recent evidence suggests that human cells naturally encode endogenous dsRNAs that can regulate antiviral machineries in cellular contexts beyond immune response. Results In this study, we use photochromic organic compound spiropyran to profile and quantitate dsRNA expression. We show that the open form of spiropyran, merocyanine, can intercalate between RNA base pairs, which leads to protonation and alteration in the spectral property of the compound. By quantifying the spectral change, we can detect and quantify dsRNA expression level, both synthetic and cellular. We further demonstrate that spiropyrans can be used as a molecular diagnostic tool to profile endogenously expressed dsRNAs. Particularly, we show that spiropyrans can robustly detect elevated dsRNA levels when colorectal cancer cells are treated with 5-aza-2'-deoxycytidine, an FDA-approved DNA-demethylating agent used for chemotherapy, thus demonstrating the use of spiropyran for predicting responsiveness to the drug treatment. Conclusion As dsRNAs are signature of virus and accumulation of dsRNAs is implicated in various degenerative disease, our work establishes potential application of spiropyrans as a simple spectral tool to diagnose human disease based on dsRNA expression.
Collapse
|
10
|
Moncelsi G, Ballester P. Photoswitchable Host‐Guest Systems Incorporating Hemithioindigo and Spiropyran Units. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Giulia Moncelsi
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16 43007 Tarragona Spain
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16 43007 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys, 23 08010 Barcelona Spain
| |
Collapse
|
11
|
Afonin AV, Vashchenko AV. The intramolecular hydrogen bond as a unit of molecular electronics: Molecular switching controlled by overcrowded intramolecular three-centered hydrogen bond. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The equilibrium geometry of the 2,5-bis-[2-(pyridin-2-yl)-vinyl]-1[Formula: see text]-pyrrole calculated at the MP2/6-311[Formula: see text]G([Formula: see text],[Formula: see text]) level of theory evidences the breaking of one of the components in the three-centered intramolecular hydrogen bond due to the steric strain. For this reason, the three-centered intramolecular hydrogen bonding turns out to be asymmetric interaction involving the major and minor components. However, the reversible switching between these components under an external impact is also possible. Two different stable states with unequal geometric and electronic structure are observed in the derivatives of the 2,5-bis-[2-(pyridin-2-yl)-vinyl]-1[Formula: see text]-pyrrole. These molecules represent novel molecular switches operating due to the pendulum-like transition between the nonequivalent two-centered components of the overcrowded three-centered intramolecular hydrogen bond. Implantation of hydrogen bond as a unit of the molecular scale device enhances potential of molecular electronics and could serve as a step towards the construction of artificial biological ensembles.
Collapse
Affiliation(s)
- Andrei V. Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Alexander V. Vashchenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia
| |
Collapse
|
12
|
Li P, Yao Q, Lü B, Ma G, Yin M. Visible Light-Induced Supra-Amphiphilic Switch Leads to Transition from Supramolecular Nanosphere to Nanovesicle Activated by Pillar[5]arene-Based Host-Guest Interaction. Macromol Rapid Commun 2018; 39:e1800133. [PMID: 29786904 DOI: 10.1002/marc.201800133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Qianfang Yao
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Baozhong Lü
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| |
Collapse
|
13
|
Halbritter T, Kaiser C, Wachtveitl J, Heckel A. Pyridine–Spiropyran Derivative as a Persistent, Reversible Photoacid in Water. J Org Chem 2017; 82:8040-8047. [DOI: 10.1021/acs.joc.7b01268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Halbritter
- Institute for Organic Chemistry and Chemical Biology and ‡Institute for Physical
and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse
7, 60438 Frankfurt
(M), Germany
| | - Christoph Kaiser
- Institute for Organic Chemistry and Chemical Biology and ‡Institute for Physical
and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse
7, 60438 Frankfurt
(M), Germany
| | - Josef Wachtveitl
- Institute for Organic Chemistry and Chemical Biology and ‡Institute for Physical
and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse
7, 60438 Frankfurt
(M), Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology and ‡Institute for Physical
and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse
7, 60438 Frankfurt
(M), Germany
| |
Collapse
|
14
|
Basílio N, Pischel U. Drug Delivery by Controlling a Supramolecular Host-Guest Assembly with a Reversible Photoswitch. Chemistry 2016; 22:15208-15211. [DOI: 10.1002/chem.201603331] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV); Rede de Química e Tecnologia (REQUIMTE); Departmento de Química; Faculdade de Ciências e Tecnologia; Universidade NOVA de Lisboa; 2829-516 Caparica Portugal
| | - Uwe Pischel
- CIQSO - Center for Research in Sustainable Chemistry and; Department of Chemistry; University of Huelva, Campus de El Carmen s/n; 21071 Huelva Spain
| |
Collapse
|
15
|
Heng S, McDevitt CA, Kostecki R, Morey JR, Eijkelkamp BA, Ebendorff-Heidepriem H, Monro TM, Abell AD. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12727-32. [PMID: 27152578 DOI: 10.1021/acsami.6b03565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.
Collapse
Affiliation(s)
- Sabrina Heng
- ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Christopher A McDevitt
- Research Center for Infectious Diseases, School of Biological Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Roman Kostecki
- ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Jacqueline R Morey
- Research Center for Infectious Diseases, School of Biological Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Bart A Eijkelkamp
- Research Center for Infectious Diseases, School of Biological Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Heike Ebendorff-Heidepriem
- ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Tanya M Monro
- The University of South Australia , Adelaide, South Australia 5000, Australia
| | - Andrew D Abell
- ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| |
Collapse
|
16
|
Chen L, Zhu Y, Yang D, Zou R, Wu J, Tian H. Synthesis and antibacterial activities of antibacterial peptides with a spiropyran fluorescence probe. Sci Rep 2014; 4:6860. [PMID: 25358905 PMCID: PMC4215325 DOI: 10.1038/srep06860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/13/2014] [Indexed: 11/21/2022] Open
Abstract
In this report, antibacterial peptides 1-3 were prepared with a spiropyran fluorescence probe. The probe exhibits a change in fluorescence when isomerized from a colorless spiro-form (spiropyran, Sp) to a colored open-form (merocyanine, Mc) under different chemical environments, which can be used to study the mechanism of antimicrobial activity. Peptides 1-3 exhibit a marked decrease in antimicrobial activity with increasing alkyl chain length. This is likely due to the Sp-Mc isomers in different polar environments forming different aggregate sizes in TBS, as demonstrated by time-dependent dynamic light scattering (DLS). Moreover, peptides 1-3 exhibited low cytotoxicity and hemolytic activity. These probe-modified peptides may provide a novel approach to study the effect of structural changes on antibacterial activity, thus facilitating the design of new antimicrobial agents to combat bacterial infection.
Collapse
Affiliation(s)
- Lei Chen
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - Yu Zhu
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - Danling Yang
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - Rongfeng Zou
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - Junchen Wu
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - He Tian
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| |
Collapse
|
17
|
Hammarson M, Nilsson JR, Li S, Lincoln P, Andréasson J. DNA-Binding Properties of Amidine-Substituted Spiropyran Photoswitches. Chemistry 2014; 20:15855-62. [DOI: 10.1002/chem.201405113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 12/25/2022]
|
18
|
Affiliation(s)
- Vânia F. Pais
- CIQSO–Center for Research in Sustainable Chemistry and Department of Chemical Engineering, Physical Chemistry, and Organic Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Eliana F.A. Carvalho
- Department of Chemistry & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - João P.C. Tomé
- Department of Chemistry & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Gent, Belgium
| | - Uwe Pischel
- CIQSO–Center for Research in Sustainable Chemistry and Department of Chemical Engineering, Physical Chemistry, and Organic Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| |
Collapse
|
19
|
Hammarson M, Nilsson J, Li S, Beke-Somfai T, Andréasson J. Characterization of the thermal and photoinduced reactions of photochromic spiropyrans in aqueous solution. J Phys Chem B 2013; 117:13561-71. [PMID: 24143951 PMCID: PMC3814652 DOI: 10.1021/jp408781p] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/30/2013] [Indexed: 12/25/2022]
Abstract
Six water-soluble spiropyran derivatives have been characterized with respect to the thermal and photoinduced reactions over a broad pH-interval. A comprehensive kinetic model was formulated including the spiro- and the merocyanine isomers, the respective protonated forms, and the hydrolysis products. The experimental studies on the hydrolysis reaction mechanism were supplemented by calculations using quantum mechanical (QM) models employing density functional theory. The results show that (1) the substitution pattern dramatically influences the pKa-values of the protonated forms as well as the rates of the thermal isomerization reactions, (2) water is the nucleophile in the hydrolysis reaction around neutral pH, (3) the phenolate oxygen of the merocyanine form plays a key role in the hydrolysis reaction. Hence, the nonprotonated merocyanine isomer is susceptible to hydrolysis, whereas the corresponding protonated form is stable toward hydrolytic degradation.
Collapse
Affiliation(s)
- Martin Hammarson
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Jesper
R. Nilsson
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Shiming Li
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tamás Beke-Somfai
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Joakim Andréasson
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
20
|
Risthaus T, Grimme S. Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. J Chem Theory Comput 2013; 9:1580-91. [DOI: 10.1021/ct301081n] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tobias Risthaus
- Mulliken Center
for Theoretical
Chemistry, Institut für Physikalische und Theoretische Chemie,
Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
- International NRW Graduate School
of Chemistry, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
| | - Stefan Grimme
- Mulliken Center
for Theoretical
Chemistry, Institut für Physikalische und Theoretische Chemie,
Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
21
|
Miskolczy Z, Biczók L. Photochromism of a Merocyanine Dye Bound to Sulfonatocalixarenes: Effect of pH and the Size of Macrocycle on the Kinetics. J Phys Chem B 2013; 117:648-53. [DOI: 10.1021/jp310167j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zsombor Miskolczy
- Institute
of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary
| | - László Biczók
- Institute
of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 17, 1525 Budapest, Hungary
| |
Collapse
|