1
|
Elmanova A, Jahn BO, Presselt M. Catching the π-Stacks: Prediction of Aggregate Structures of Porphyrin. J Phys Chem A 2024; 128:9917-9926. [PMID: 39520375 PMCID: PMC11586908 DOI: 10.1021/acs.jpca.4c05969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
π-π interactions decisively shape the supramolecular structure and functionality of π-conjugated molecular semiconductor materials. Despite the customizable molecular building blocks, predicting their supramolecular structure remains a challenge. Traditionally, force field methods have been used due to the complexity of these structures, but advances in computational power have enabled ab initio approaches such as density functional theory (DFT). DFT is particularly suitable for finding energetically favorable structures of dye aggregates, which are determined by a large number of different interactions, but a systematic aggregate search can still be very challenging due to the large number of possible geometries. In this work, we show ways to overcome this challenge. We investigate how finely translational and rotational lattices must be structured to identify all energetic minima of π-stack structures, focusing on porphyrins as a prototype challenge. Our approach involves single-point DFT calculations of systematically varied dimer geometries, identification of local energy minima, hierarchical grouping of geometrically similar structures, and optimization of the energetically favorable representatives of each geometric family. This ab initio method provides a general framework for the systematic prediction of aggregate structures and reveals geometrically diverse and energetically favorable dimers.
Collapse
Affiliation(s)
- Anna Elmanova
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- SciClus
GmbH&Co. KG, Moritz-von-Rohr-Str.
1a, 07745 Jena, Germany
| | - Burkhard O. Jahn
- SciClus
GmbH&Co. KG, Moritz-von-Rohr-Str.
1a, 07745 Jena, Germany
| | - Martin Presselt
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- SciClus
GmbH&Co. KG, Moritz-von-Rohr-Str.
1a, 07745 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich
Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
2
|
Finkelmeyer SJ, Askins EJ, Eichhorn J, Ghosh S, Siegmund C, Täuscher E, Dellith A, Hupfer ML, Dellith J, Ritter U, Strzalka J, Glusac K, Schacher FH, Presselt M. Tailoring the Weight of Surface and Intralayer Edge States to Control LUMO Energies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305006. [PMID: 37572365 DOI: 10.1002/adma.202305006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Indexed: 08/14/2023]
Abstract
The energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions. This method uses a Langmuir-Schaefer-type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π-conjugated molecules. Using UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi-Langmuir layers and enables the production of films with defined morphology. The variation in nearest-neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square-wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.
Collapse
Affiliation(s)
- Sarah Jasmin Finkelmeyer
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Erik J Askins
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois, 60439, USA
| | - Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Soumik Ghosh
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | - Carmen Siegmund
- Institute for Chemistry and Biotechnology, Ilmenau University of Technology, 98684, Ilmenau, Germany
| | - Eric Täuscher
- Institute for Chemistry and Biotechnology, Ilmenau University of Technology, 98684, Ilmenau, Germany
| | - Andrea Dellith
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Maximilian L Hupfer
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Jan Dellith
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Uwe Ritter
- Institute for Chemistry and Biotechnology, Ilmenau University of Technology, 98684, Ilmenau, Germany
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Ksenija Glusac
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois, 60439, USA
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
3
|
Hupfer ML, Dellith J, Seyring M, Diegel M, Dellith A, Ghosh S, Rettenmayr M, Dietzek-Ivanšić B, Presselt M. Bifacial Dye Membranes: Ultrathin and Free-Standing although not Being Covalently Bound. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204874. [PMID: 36300596 DOI: 10.1002/adma.202204874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Layers of aligned dyes are key to photo-driven charge separation in dye sensitized solar cells, but cannot be exploited as rectifying membranes in photocatalysis to separate half-cells because they are not sufficiently stable. While impressive work on the fabrication of stable noncovalent membranes has been recently demonstrated, these membranes are inherently suffering from non-uniform orientation of the constituting dyes. To stabilize layers made from uniformly assembled and aligned dyes, they can be covalently cross-linked via functional groups or via chromophores at the expense of their optical properties. Here stable membranes from established dyes are reported that do not need to be elaborately functionalized nor do their chromophores need to be destroyed. These membranes are free-standing, although being only non-covalently linked. To enable uniform dye-alignment, Langmuir layers made from linear, water-insoluble dyes are used. That water-soluble charge transfer dyes adsorb onto and intercalate into the Langmuir layer from the aqueous subphase, thus yielding free-standing, molecularly thin membranes are demonstrated. The developed bifacial layers consist almost entirely of π-conjugated units and thus can conduct charges and can be further engineered for optoelectronic and photocatalytic applications.
Collapse
Affiliation(s)
- Maximilian L Hupfer
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jan Dellith
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Martin Seyring
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Marco Diegel
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Andrea Dellith
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Soumik Ghosh
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | - Markus Rettenmayr
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
4
|
Hupfer ML, Blaschke D, Schmidt H, Presselt M. Embedding an Amphiphilic 4-Hydroxy Thiazole Dye in Langmuir Matrices: Studying Miscibilities with Arylic and Alkylic Matrix Amphiphiles via Langmuir Isotherms and Photo-induced Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13255-13264. [PMID: 34726417 DOI: 10.1021/acs.langmuir.1c01772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present here a fundamental study on the miscibility between a prototype amphiphilic dye and alkylic and arylic Langmuir monolayers. Embedding dyes in such matrices is crucial for utilizing dyes in any photo-energy conversion process if the involved dyes form aggregates that provide thermal deactivation channels. Because miscibility in Langmuir matrices depends on the blending ratio between the dye and matrix and on the Langmuir film density, as characterized via the surface pressure and the mean molecular area, we employ Langmuir miscibility studies to identify ideal miscibility parameters for each matrix. Atomic force microscopy (AFM) results support miscibility between the dye and both matrix materials at low surface pressures, where smooth and homogeneous films are obtained. AFM and photo-induced force microscopy (PiFM) reveal phase separation if the Langmuir monolayers are deposited at surface pressures above 8 mN/m at which reorientation of the chromophores has been reported. The nanoscale chemical fingerprint mapping enabled by PiFM enables assigning segregated spots to small stearic acid (SA)-enriched domains that have not been detected via AFM, thus demonstrating the value of the IR-spectroscopic contrast provided by PiFM. In this work, we have presented a so far unexploited matrix material (terphenylene carboxylic acid; TPCA) and found it equally suitable for embedding dyes as the standard amphiphile SA. In contrast to SA, TPCA is composed of rigid and electrically conducting π-electron systems, hence, being predestined for aligning dyes in Langmuir matrices and for application in optoelectronic systems.
Collapse
Affiliation(s)
- Maximilian L Hupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Daniel Blaschke
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Heidemarie Schmidt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
5
|
Hupfer ML, Koszarna B, Ghosh S, Gryko DT, Presselt M. Langmuir-Blodgett Films of Diketopyrrolopyrroles with Tunable Amphiphilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10272-10278. [PMID: 34405682 DOI: 10.1021/acs.langmuir.1c01113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we present the formation of H- and J-aggregates of amphiphilic centrosymmetric diketopyrrolopyrroles containing aliphatic or aromatic amino groups. The inherent amphiphilicity of these dyes predestines their assembly at interfaces to form ordered supramolecular structures. In this work, we employed the Langmuir-Blodgett (LB) technique to generate, manipulate, and deposit such supramolecular structures. The aforementioned amines provide an additional means to control the formation of the supramolecular assemblies. In the resulting LB films, both H- and J-aggregates of the dyes can be realized, leading to very broad absorption spectra. In contrast to many reports on H- and J-aggregates, the interactions between the symmetric diketopyrrolopyrroles are controlled via interface assembly and π-stacking and not by dipolar interactions. We show that in the case of the aliphatic, but not for the aromatic amine functionalization, the usage of an acidic subphase enables the transition from H- to J-aggregate-dominated LB films via an increase in the surface pressure during deposition.
Collapse
Affiliation(s)
- Maximilian L Hupfer
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Beata Koszarna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Soumik Ghosh
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- SciClus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- SciClus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
6
|
Deb S, Sahoo A, Pal P, Baitalik S. Exploitation of the Second Coordination Sphere to Promote Significant Increase of Room-Temperature Luminescence Lifetime and Anion Sensing in Ruthenium-Terpyridine Complexes. Inorg Chem 2021; 60:6836-6851. [PMID: 33885303 DOI: 10.1021/acs.inorgchem.1c00821] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper deals with the synthesis, characterization, and photophysical behaviors of three Ru(II)-terpyridine complexes derived from a terpyridyl-imidazole ligand (tpy-HImzPh3Me2), wherein a terpyridine moiety has been coupled with a dimethylbenzil unit through a phenylimidazole spacer. The three complexes display strong emission at RT having excited-state lifetimes in the range of 2.3-43.7 ns, depending upon the co-ligand present and the solvents used. Temperature-dependent emission spectral measurements have demonstrated that the energy separation between emitting metal-to-ligand charge transfer state and non-emitting metal-centered state is increased relative to that of [Ru(tpy)2]2+. In contrast to our previously studied Ru(II) complexes containing similar terpyridyl-imidazole motif but differing by peripheral methyl groups, significant enhancement of RT emission intensity and quantum yield and remarkable increase of emission lifetime occur for the present complexes upon protonation of the imidazole nitrogen(s) with perchloric acid. Additionally, by exploiting imidazole NH motif(s), we have examined their anion recognition behaviors in organic and aqueous media. Interestingly, the complexes are capable of visually recognizing cyanide ions in aqueous medium up to the concentration limit of 10-8 M. Computational studies involving density functional theory (DFT) and time-dependent DFT methods have been carried out to obtain insights into their electronic structures and to help with the assignment of absorption and emission bands.
Collapse
Affiliation(s)
- Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Poulami Pal
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
7
|
Das S, Fiedler J, Stauffert O, Walter M, Buhmann SY, Presselt M. Macroscopic quantum electrodynamics and density functional theory approaches to dispersion interactions between fullerenes. Phys Chem Chem Phys 2020; 22:23295-23306. [PMID: 33034333 DOI: 10.1039/d0cp02863k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The processing and material properties of commercial organic semiconductors, for e.g. fullerenes is largely controlled by their precise arrangements, specially intermolecular symmetries, distances and orientations, more specifically, molecular polarisabilities. These supramolecular parameters heavily influence their electronic structure, thereby determining molecular photophysics and therefore dictating their usability as n-type semiconductors. In this article we evaluate van der Waals potentials of a fullerene dimer model system using two approaches: (a) Density Functional Theory and, (b) Macroscopic Quantum Electrodynamics, which is particularly suited for describing long-range van der Waals interactions. Essentially, we determine and explain the model symmetry, distance and rotational dependencies on binding energies and spectral changes. The resultant spectral tuning is compared using both methods showing correspondence within the constraints placed by the different model assumptions. We envision that the application of macroscopic methods and structure/property relationships laid forward in this article will find use in fundamental supramolecular electronics.
Collapse
Affiliation(s)
- Saunak Das
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany. and Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany and Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Johannes Fiedler
- Institute of Physics, Albert-Ludwigs University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany. and Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway
| | - Oliver Stauffert
- Institute of Physics, Albert-Ludwigs University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany.
| | - Michael Walter
- Institute of Physics, Albert-Ludwigs University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany. and FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany and Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany and Frauenhofer IWM, MikroTribologie Centrum μTC, Wöhlerstrasse 11, 79108 Freiburg, Germany
| | - Stefan Yoshi Buhmann
- Institute of Physics, Albert-Ludwigs University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany.
| | - Martin Presselt
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany. and Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany and Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany and Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany
| |
Collapse
|
8
|
Hupfer ML, Kaufmann M, May S, Preiß J, Weiß D, Dietzek B, Beckert R, Presselt M. Enhancing the supramolecular stability of monolayers by combining dipolar with amphiphilic motifs: a case of amphiphilic push-pull-thiazole. Phys Chem Chem Phys 2019; 21:13241-13247. [PMID: 31180395 DOI: 10.1039/c9cp02013f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Equipping a thiazole dye with push and pull moieties adds dipolar intermolecular interactions and two hydrophilic anchors to a centrally anchored π-stacking and otherwise mono-amphiphilic dye. We show that, despite the resulting irregular shape of the tripodal amphiphile, the enhanced intermolecular interactions and amphiphilicity yield smooth and stable thin films. Furthermore, we present a first approach for deriving supramolecular binding energies from the Langmuir-Blodgett hysteresis data.
Collapse
Affiliation(s)
- M L Hupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Takeda H, Monma Y, Sugiyama H, Uekusa H, Ishitani O. Development of Visible-Light Driven Cu(I) Complex Photosensitizers for Photocatalytic CO 2 Reduction. Front Chem 2019; 7:418. [PMID: 31245355 PMCID: PMC6562897 DOI: 10.3389/fchem.2019.00418] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
The visible-light responsive Cu(I)-complex photosensitizers were developed by introducing various aromatic substituents at the 4,7-positions of a 2,9-dimethyl-1,10-phenanthroline (dmp) ligand in a heteroleptic CuI(dmp)(DPEphos)+-type complexes (DPEphos = [2-(diphenylphosphino)phenyl]ether) for photocatalytic CO2 reduction. Introducing biphenyl groups (Bp-) on the dmp ligand enhanced the molar extinction coefficient (ε) of the metal-to-ligand charge transfer (MLCT) band in the visible region (ε = 7,500 M-1cm-1) compared to that of the phenyl (Ph-)-containing analog (ε = 5,700 M-1cm-1 at λmax = 388 nm). However, introducing 4-R-Ph- groups (R = the electron-withdrawing groups NC-, or NO2-) led to a red shift in the band to λmax = 390, 400, and 401 nm, respectively. Single-crystal X-ray analysis showed the Ph- groups were twisted because of the steric repulsion between the 2,6-protons of the Ph- groups and 5,6-protons of the dmp ligand. The result strongly indicated that the π-conjugation effect of the 4-R-Ph- groups is so weak that the lowering of the energy of the dmp π* orbitals is small. However, when 4-R-ph- was substituted by a 5-membered heterorings, there was a larger red shift, leading to an increase in the ε value of the MLCT absorption band. Thus, the substitution to 2-benzofuranyl- groups resulted in visible-light absorption up to 500 nm and a shoulder peak at around 420 nm (ε = 12,300 M-1cm-1) due to the expansion of π-conjugation over the substituted dmp ligand. The photocatalytic reaction for CO2 reduction was tested using the obtained CuI complexes as photosensitizers in the presence of a Fe(dmp)2(NCS)2 catalyst and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as a sacrificial reductant, which showed improved CO generation.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Yu Monma
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Haruki Sugiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
10
|
Hupfer ML, Kaufmann M, Roussille L, Preiß J, Weiß D, Hinrichs K, Deckert V, Dietzek B, Beckert R, Presselt M. Arylic versus Alkylic-Hydrophobic Linkers Determine the Supramolecular Structure and Optoelectronic Properties of Tripodal Amphiphilic Push-Pull Thiazoles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2561-2570. [PMID: 30694677 DOI: 10.1021/acs.langmuir.8b03893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The supramolecular structures and their constituents essentially determine the optoelectronic properties of thin films. The introduction of amphiphilicity to the constituents and interface assembly is one established technique to control supramolecular structures and resulting material properties. To yield amphiphilicity, rather hydrophobic chromophores are linked to hydrophilic head groups via flexible alkyl chains. In the present work, we investigate whether replacement of the alkyl linkers by a phenylene linker, that is, replacing an electrically isolating moiety with a potentially semiconducting one, increases the conductivity through the resulting layers. After investigating the influence of the linker on molecular properties of the 2-(4- N, N-dimethylaminophenyl)-4-hydroxy-5-nitrophenyl-1,3 thiazoles exemplarily used in this work, we produce supramolecular structures by means of the Langmuir-Blodgett (LB) technique. Atomic force microscopy (AFM) and UV-vis absorption spectroscopy reveal that thin films made from the more rigid thiazole bearing the arylic linker feature a more homogeneous and stable supramolecular structure as compared to those made from the thiazole dye containing the flexible alkylic linker. Finally, conductive AFM (cAFM) results disclose that the LB films made from the thiazole bearing the π-conjugated arylic linker are less conductive than their counterparts based on the alkylic linkers. In the latter layers, the alkylic linkers provide sufficient motional degrees of freedom to allow for supramolecular rearrangement upon electrical operation during cAFM measurements, hence yielding supramolecular structures featuring increased conductivity with successive cAFM measurements. This work highlights the importance of supramolecular structures for optoelectronic properties by presenting a case where supramolecular effects excel the property changes introduced by molecular modifications.
Collapse
Affiliation(s)
- M L Hupfer
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - M Kaufmann
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Institute of Organic and Macromolecular Chemistry , Friedrich-Schiller-University Jena , Humboldtstraße 10 , Jena 07743 , Germany
| | - L Roussille
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - J Preiß
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - D Weiß
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - K Hinrichs
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Schwarzschildstr. 8 , 12489 Berlin , Germany
| | - V Deckert
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - B Dietzek
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - R Beckert
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - M Presselt
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Jena 07743 , Germany
- Sciclus GmbH & Co. KG , Moritz-von-Rohr Str. 1a , 07745 Jena , Germany
| |
Collapse
|
11
|
Hupfer ML, Kaufmann M, Preiß J, Weiß D, Beckert R, Dietzek B, Presselt M. Assembly of T-Shaped Amphiphilic Thiazoles on the Air-Water Interface: Impact of Polar Chromophore Moieties, as Well as Dipolarity and π-Extension of the Chromophore on the Supramolecular Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2587-2600. [PMID: 30688466 DOI: 10.1021/acs.langmuir.8b04063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The supramolecular structure essentially determines the properties of organic thin films. In this work, we systematically investigate the influence of the chromophore on the supramolecular structure formation at air-water interfaces by means of the Langmuir-Blodgett technique. Therefore, we focus on the recently introduced class of double-anchor T-shaped amphiphilic dyes, namely, 4-hydroxy-thiazole chromophores that are centrally equipped with an amphiphilicity-inducing hexanoic acid. The thiazoles contain hydrophilic subphase-anchor groups in the 2-position (4- N, N-dimethylaminophenyl (Am), 2-pyridyl (Py), and 4-nitrophenyl (Ni)), whereas the chromophores are systematically extended in the 5-position with various substituents. The combination of the Langmuir technique with online fluorescence measurements revealed that the π-π interactions that are pronounced in the case of 4-methoxybiphenyl derivatives yield the most distinct supramolecular structures. Whereas in the case of Py and Ni derivatives ordered J-type supramolecular structures in microdomains are formed, the Am derivative forms ordered supramolecular structures that are more homogeneous, which are, however, not stabilized by J-type dipolar interactions. Because of the synergetic π-π and dipolar stabilizations, the Ni derivative bearing the 4-methoxybiphenyl unit forms exceptionally stable quasi-two-dimensional Langmuir monolayers reaching very high surface pressures beyond 60 mN/m without any sign of disturbance of the Langmuir monolayer.
Collapse
Affiliation(s)
- Maximilian L Hupfer
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - Martin Kaufmann
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Institute of Organic and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldstraße 10 , 07743 Jena , Germany
| | - Julia Preiß
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - Dieter Weiß
- Institute of Organic and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldstraße 10 , 07743 Jena , Germany
| | - Rainer Beckert
- Institute of Organic and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldstraße 10 , 07743 Jena , Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - Martin Presselt
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Philosophenweg 7a , 07743 Jena , Germany
- SciClus GmbH & Co. KG , Moritz-von-Rohr-Str. 1a , 07745 Jena , Germany
| |
Collapse
|
12
|
Zedler L, Krieck S, Kupfer S, Dietzek B. Resonance Raman Spectro-Electrochemistry to Illuminate Photo-Induced Molecular Reaction Pathways. Molecules 2019; 24:molecules24020245. [PMID: 30634707 PMCID: PMC6358810 DOI: 10.3390/molecules24020245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/16/2022] Open
Abstract
Electron transfer reactions play a key role for artificial solar energy conversion, however, the underlying reaction mechanisms and the interplay with the molecular structure are still poorly understood due to the complexity of the reaction pathways and ultrafast timescales. In order to investigate such light-induced reaction pathways, a new spectroscopic tool has been applied, which combines UV-vis and resonance Raman spectroscopy at multiple excitation wavelengths with electrochemistry in a thin-layer electrochemical cell to study [RuII(tbtpy)₂]2+ (tbtpy = tri-tert-butyl-2,2':6',2''-terpyridine) as a model compound for the photo-activated electron donor in structurally related molecular and supramolecular assemblies. The new spectroscopic method substantiates previous suggestions regarding the reduction mechanism of this complex by localizing photo-electrons and identifying structural changes of metastable intermediates along the reaction cascade. This has been realized by monitoring selective enhancement of Raman-active vibrations associated with structural changes upon electronic absorption when tuning the excitation wavelength into new UV-vis absorption bands of intermediate structures. Additional interpretation of shifts in Raman band positions upon reduction with the help of quantum chemical calculations provides a consistent picture of the sequential reduction of the individual terpyridine ligands, i.e., the first reduction results in the monocation [(tbtpy)Ru(tbtpy•)]⁺, while the second reduction generates [(tbtpy•)Ru(tbtpy•)]0 of triplet multiplicity. Therefore, the combination of this versatile spectro-electrochemical tool allows us to deepen the fundamental understanding of light-induced charge transfer processes in more relevant and complex systems.
Collapse
Affiliation(s)
- Linda Zedler
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745 Jena, Germany.
| | - Sven Krieck
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany.
| | - Benjamin Dietzek
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745 Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany.
| |
Collapse
|
13
|
Luo Y, Tran JH, Wächtler M, Schulz M, Barthelmes K, Winter A, Rau S, Schubert US, Dietzek B. Remote control of electronic coupling – modification of excited-state electron-transfer rates in Ru(tpy)2-based donor–acceptor systems by remote ligand design. Chem Commun (Camb) 2019; 55:2273-2276. [DOI: 10.1039/c8cc10075f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Electronic coupling (HDA) underlying the electron transfer (ET) can be tuned by the remote substituents R.
Collapse
Affiliation(s)
- Yusen Luo
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| | - Jens H. Tran
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Maria Wächtler
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| | - Martin Schulz
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Kevin Barthelmes
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| | - Sven Rau
- Institute for Inorganic Chemistry I
- Ulm University
- 89081 Ulm
- Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| |
Collapse
|
14
|
Preiss J, Kage D, Hoffmann K, Martínez TJ, Resch-Genger U, Presselt M. Ab Initio Prediction of Fluorescence Lifetimes Involving Solvent Environments by Means of COSMO and Vibrational Broadening. J Phys Chem A 2018; 122:9813-9820. [PMID: 30507127 DOI: 10.1021/acs.jpca.8b08886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fluorescence lifetime is a key property of fluorophores that can be utilized for microenvironment probing, analyte sensing, and multiplexing as well as barcoding applications. For the rational design of lifetime probes and barcodes, theoretical methods have been developed to enable the ab initio prediction of this parameter, which depends strongly on interactions with solvent molecules and other chemical species in the emitteŕs immediate environment. In this work, we investigate how a conductor-like screening model (COSMO) can account for variations in fluorescence lifetimes that are caused by such fluorophore-solvent interactions. Therefore, we calculate vibrationally broadened fluorescence spectra using the nuclear ensemble method to obtain distorted molecular geometries to sample the electronic transitions with time-dependent density functional theory (TDDFT). The influence of the solvent on fluorescence lifetimes is accounted for with COSMO. For example, for 4-hydroxythiazole fluorophore containing different heteroatoms and acidic and basic moieties in aprotic and protic solvents of varying polarity, this approach was compared to experimentally determined lifetimes in the same solvents. Our results demonstrate a good correlation between theoretically predicted and experimentally measured fluorescence lifetimes except for the polar solvents ethanol and acetonitrile that can specifically interact with the heteroatoms and the carboxylic acid of the thiazole derivative.
Collapse
Affiliation(s)
- Julia Preiss
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Strasse 9 , 07745 Jena , Germany
| | - Daniel Kage
- Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Strasse 11 , 12489 Berlin , Germany.,Department of Physics , Humboldt-Universität zu Berlin , Newtonstrasse 15 , 12489 Berlin , Germany
| | - Katrin Hoffmann
- Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Strasse 11 , 12489 Berlin , Germany
| | - Todd J Martínez
- SLAC National Accelerator Laboratory , Menlo Park , California 94309 , United States.,Department of Chemistry and PULSE Institute , Stanford University , Stanford , California 94305 , United States
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Strasse 11 , 12489 Berlin , Germany
| | - Martin Presselt
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Strasse 9 , 07745 Jena , Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Philosophenweg 7a , 07743 Jena , Germany.,Sciclus GmbH & Co. KG, Moritz-von-Rohr-Strasse 1a , 07745 Jena , Germany
| |
Collapse
|
15
|
Herrmann-Westendorf F, Sachse T, Schulz M, Kaufmann M, Sivakov V, Beckert R, Martínez T, Dietzek B, Presselt M. Photoannealing of Merocyanine Aggregates. J Phys Chem A 2018; 122:9821-9832. [DOI: 10.1021/acs.jpca.8b09048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felix Herrmann-Westendorf
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena (IPHT), Department Functional Interfaces, Albert Einstein Straße 9, 07745 Jena, Germany
| | - Torsten Sachse
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena (IPHT), Department Functional Interfaces, Albert Einstein Straße 9, 07745 Jena, Germany
| | - Martin Schulz
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena (IPHT), Department Functional Interfaces, Albert Einstein Straße 9, 07745 Jena, Germany
| | - Martin Kaufmann
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Vladimir Sivakov
- Leibniz Institute of Photonic Technology Jena (IPHT), Department Functional Interfaces, Albert Einstein Straße 9, 07745 Jena, Germany
| | - Rainer Beckert
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Todd Martínez
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena (IPHT), Department Functional Interfaces, Albert Einstein Straße 9, 07745 Jena, Germany
| | - Martin Presselt
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena (IPHT), Department Functional Interfaces, Albert Einstein Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, 07743 Jena, Germany
- sciclus GmbH & Co. KG, Moritz-von-Rohr Strasse 1a, 07745 Jena, Germany
| |
Collapse
|
16
|
Pal P, Mukherjee S, Maity D, Baitalik S. Synthesis, Photophysics, and Switchable Luminescence Properties of a New Class of Ruthenium(II)-Terpyridine Complexes Containing Photoisomerizable Styrylbenzene Units. ACS OMEGA 2018; 3:14526-14537. [PMID: 31458137 PMCID: PMC6645016 DOI: 10.1021/acsomega.8b01927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/19/2018] [Indexed: 06/10/2023]
Abstract
We report here the synthesis and structural characterization of a new class of homoleptic terpyridine complexes of Ru(II) containing styrylbenzene moieties to improve room-temperature luminescence properties. Solid-state structure determination of 2 was done through single-crystal X-ray diffraction. Tuning of photophysical properties was done by incorporating both electron-donating and electron-withdrawing substituents in the ligand. The complexes exhibit strong emission having lifetimes in the range of 10.0-158.5 ns, dependent on the substituent and the solvent. Good correlations were also observed between Hammett σp parameters with the lifetimes of the complexes. Styrylbenzene moieties in the complexes induce trans-trans to trans-cis isomerization accompanied by huge alteration of their spectral profiles upon treating with UV light. Reversal of trans-cis to trans-trans forms was also achieved on interacting with visible light. Change from trans-trans to the corresponding trans-cis form leads to emission quenching, whereas trans-cis to the corresponding trans-trans form leads to restoration of emission. In essence, "on-off" and "off-on" photoswitching of luminescence was observed. Calculations involving density functional theory (DFT) and time-dependent-DFT methods were performed to understand the electronic structures as well as for appropriate assignment of the absorption and emission bands.
Collapse
Affiliation(s)
- Poulami Pal
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Shruti Mukherjee
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Dinesh Maity
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- Department
of Chemistry, Katwa College, Purba Bardhaman, West Bengal 713130, India
| | - Sujoy Baitalik
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
17
|
Kaufmann M, Hupfer M, Sachse T, Herrmann-Westendorf F, Weiß D, Dietzek B, Beckert R, Presselt M. Introducing double polar heads to highly fluorescent Thiazoles: Influence on supramolecular structures and photonic properties. J Colloid Interface Sci 2018; 526:410-418. [DOI: 10.1016/j.jcis.2018.04.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
|
18
|
Pal P, Mukherjee S, Maity D, Baitalik S. Synthesis, Structural Characterization, and Luminescence Switching of Diarylethene-Conjugated Ru(II)-Terpyridine Complexes by trans-cis Photoisomerization: Experimental and DFT/TD-DFT Investigation. Inorg Chem 2018; 57:5743-5753. [PMID: 29701476 DOI: 10.1021/acs.inorgchem.7b03096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We synthesized and thoroughly characterized a new family of diarylethene-conjugated mononuclear Ru(II)-terpyridine complexes and investigated in detail their photophysical, electrochemical, and spectroelectrochemical behaviors. Interestingly, the compounds show moderately strong room-temperature luminescence predominantly from their 3MLCT state with luminescence lifetime varying between 8.43 and 22.82 ns. Because of the presence of diarylethene unit, all the monometallic complexes underwent trans-to-cis photoisomerization upon interaction with UV light with substantial changes in their absorption and luminescence spectra. Reverting back from the cis to the trans form is also made possible upon treatment with visible light or by heat. Trans-to-cis isomerization leads to almost complete quenching of luminescence, while backward cis-to-trans isomerization gives rise to restoration of the original luminescence for all the complexes. Thus, "on-off" and "off-on" emission switching was made possible upon successive interaction of the complexes with UV and visible light. Computational investigation involving density functional theory (DFT) and time-dependent DFT methods was done for proper assignment of the experimental absorption and emission spectral bands in the complexes. Finally, experimentally observed trend on the absorption and emission spectral behaviors of the complexes upon photoisomerization was also compared with the calculated results.
Collapse
Affiliation(s)
- Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Shruti Mukherjee
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Dinesh Maity
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section , Jadavpur University , Kolkata 700032 , India
| |
Collapse
|
19
|
Sánchez-Murcia PA, Nogueira JJ, González L. Exciton Localization on Ru-Based Photosensitizers Induced by Binding to Lipid Membranes. J Phys Chem Lett 2018; 9:683-688. [PMID: 29363982 DOI: 10.1021/acs.jpclett.7b03357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The characterization of electronic properties of metal complexes embedded in membrane environments is of paramount importance to develop efficient photosensitizers in optogenetic applications. Molecular dynamics and QM/MM simulations together with quantitative wave function analysis reveal a directional electronic redistribution of the exciton formed upon excitation of [Ru(bpy)2(bpy-C17)]2+ when going from water to a lipid bilayer, despite the fact that the media influence neither the metal-to-ligand charge-transfer character nor the excitation energy of the absorption spectra. When the photosensitizer is embedded into the DOPC lipid membrane, exciton population is mainly located in the bypyridyl sites proximal to the positively charged surface of the bilayer due to electrostatic interactions. This behavior shows that the electronic structure of metal complexes can be controlled through the binding to external species, underscoring the crucial role of the environment in directing the electronic flow upon excitation and thus helping rational tuning of optogenetic agents.
Collapse
Affiliation(s)
- Pedro A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Str. 17, A-1090 Vienna, Austria
| | - Juan J Nogueira
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Str. 17, A-1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Str. 17, A-1090 Vienna, Austria
| |
Collapse
|
20
|
Bangle R, Sampaio RN, Troian-Gautier L, Meyer GJ. Surface Grafting of Ru(II) Diazonium-Based Sensitizers on Metal Oxides Enhances Alkaline Stability for Solar Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3121-3132. [PMID: 29272096 DOI: 10.1021/acsami.7b16641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electrografting of [Ru(ttt)(tpy-C6H4-N2+)]3+, where "ttt" is 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine, was investigated on several wide band gap metal oxide surfaces (TiO2, SnO2, ZrO2, ZnO, In2O3:Sn) and compared to structurally analogous sensitizers that differed only by the anchoring group, i.e., -PO3H2 and -COOH. An optimized procedure for diazonium electrografting to semiconductor metal oxides is presented that allowed surface coverages that ranged between 4.7 × 10-8 and 10.6 × 10-8 mol cm-2 depending on the nature of the metal oxide. FTIR analysis showed the disappearance of the diazonium stretch at 2266 cm-1 after electrografting. XPS analysis revealed a characteristic peak of Ru 3d at 285 eV as well as a peak at 531.6 eV that was attributed to O 1s in Ti-O-C bonds. Photocurrents were measured to assess electron injection efficiency of these modified surfaces. The electrografted sensitizers exhibited excellent stability across a range of pHs spanning from 1 to 14, where classical binding groups such as carboxylic and phosphonic derivatives were hydrolyzed.
Collapse
Affiliation(s)
- Rachel Bangle
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Renato N Sampaio
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
21
|
Hupfer ML, Kaufmann M, Herrmann-Westendorf F, Sachse T, Roussille L, Feller KH, Weiß D, Deckert V, Beckert R, Dietzek B, Presselt M. On the Control of Chromophore Orientation, Supramolecular Structure, and Thermodynamic Stability of an Amphiphilic Pyridyl-Thiazol upon Lateral Compression and Spacer Length Variation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44181-44191. [PMID: 29185335 DOI: 10.1021/acsami.7b13042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The supramolecular structure essentially determines the properties of organic thin films. Therefore, it is of utmost importance to understand the influence of molecular structure modifications on supramolecular structure formation. In this article, we demonstrate how to tune molecular orientations of amphiphilic 4-hydroxy thiazole derivatives by means of the Langmuir-Blodgett (LB) technique and how this depends on the length of an alkylic spacer between the thiazole chromophore and the polar anchor group. Therefore, we characterize their corresponding supramolecular structures, thermodynamic, absorption, and fluorescence properties. Particularly, the polarization-dependence of the fluorescence is analyzed to deduce molecular orientations and their possible changes after annealing, i.e., to characterize the thermodynamic stability of the individual solid state phases. Because the investigated thiazoles are amphiphilic, the different solid state phases can be formed and be controlled by means of the Langmuir-Blodgett (LB) technique. This technique also allows to deduce atomistic supramolecular structure motives of the individual solid phases and to characterize their thermodynamic stabilities. Utilizing the LB technique, we demonstrate that subtle molecular changes, like the variation in spacer length, can yield entirely different solid state phases with distinct supramolecular structures and properties.
Collapse
Affiliation(s)
- Maximilian L Hupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Martin Kaufmann
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena , Humboldstraße 10, 07743 Jena, Germany
| | - Felix Herrmann-Westendorf
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Torsten Sachse
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Ludovic Roussille
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Karl-Heinz Feller
- FB Med Tech & Biotechnol, University of Applied Sciences Jena , 07745 Jena, Germany
| | - Dieter Weiß
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena , Humboldstraße 10, 07743 Jena, Germany
| | - Volker Deckert
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Rainer Beckert
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena , Humboldstraße 10, 07743 Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Martin Presselt
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena , Philosophenweg 7a, 07743 Jena, Germany
- SciClus GmbH & Co. KG , Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany
| |
Collapse
|
22
|
Preiß J, Herrmann-Westendorf F, Ngo TH, Martínez T, Dietzek B, Hill JP, Ariga K, Kruk MM, Maes W, Presselt M. Absorption and Fluorescence Features of an Amphiphilic meso-Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. J Phys Chem A 2017; 121:8614-8624. [DOI: 10.1021/acs.jpca.7b08910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julia Preiß
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Felix Herrmann-Westendorf
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Thien H. Ngo
- International
Center for Young Scientists (ICYS), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
- WPI
Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Todd Martínez
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
| | - Benjamin Dietzek
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), 07743 Jena, Germany
| | - Jonathan P. Hill
- WPI
Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- WPI
Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Mikalai M. Kruk
- Belarusian State Technological University, Physics
Department, Sverdlova
str. 13a, Minsk 220006, Belarus
| | - Wouter Maes
- Design & Synthesis of Organic Semiconductors (DSOS), UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Agoralaan, 3590 Diepenbeek, Belgium
| | - Martin Presselt
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), 07743 Jena, Germany
- Sciclus GmbH Co. KG, Moritz-von-Rohr-Straße 1a, 07745 Jena, Germany
| |
Collapse
|
23
|
Mondal D, Biswas S, Paul A, Baitalik S. Luminescent Dinuclear Ruthenium Terpyridine Complexes with a Bis-Phenylbenzimidazole Spacer. Inorg Chem 2017; 56:7624-7641. [PMID: 28654273 DOI: 10.1021/acs.inorgchem.6b02937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A conjugated bis-terpyridine bridging ligand, 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-6-(2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-benzo[d]imidazol-6-yl)-1H-benzo[d] imidazole (tpy-BPhBzimH2-tpy), was designed in this work by covalent coupling of 3,3'-diaminobenzidine and two 4'-(p-formylphenyl)-2,2':6',2″-terpyridine units to synthesize a new series of bimetallic Ru(II)-terpyridine light-harvesting complexes. Photophysical and electrochemical properties were modulated by the variation of the terminal ligands in the complexes. The new compounds were thoroughly characterized by 1H NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Absorption spectra of the complexes consist of very strong ligand-centered π-π* and n-π* transitions in the UV, metal-to-ligand, and intraligand charge transfer bands in the visible regions. Steady-state and time-resolved emission spectral measurements indicate that the complexes exhibit moderately intense luminescence at room temperature within the spectral domain of 653-687 nm having luminescence lifetimes in the range between 6.3 and 55.2 ns, depending upon terminal tridentate ligand and solvent. Variable-temperature luminescence measurements suggest substantial increase of the energy gap between luminescent 3metal-to-ligand charge transfer state and nonluminescent 3metal centered in the complexes compared to the parent [Ru(tpy)2]2+. Each of the three bimetallic complexes exhibits only one reversible couple in the positive potential window with almost no detectable splitting corresponding to simultaneous oxidation of the two remote Ru centers. All the complexes possess a number of imidazole NH protons, which became sufficiently acidic upon metal ion coordination. By utilizing these NH protons, we thoroughly studied anion recognition properties of the complexes in pure organic as well as predominantly aqueous media through multiple optical channels and spectroscopic methods. Finally computation investigations employing density functional theory (DFT) and time-dependent DFT were done to examine the electronic structures of the complexes and accurate assignment of experimentally observed optical spectral bands.
Collapse
Affiliation(s)
- Debiprasad Mondal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sourav Biswas
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Animesh Paul
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|
24
|
Mondal D, Bar M, Mukherjee S, Baitalik S. Design of Ru(II) Complexes Based on Anthraimidazoledione-Functionalized Terpyridine Ligand for Improvement of Room-Temperature Luminescence Characteristics and Recognition of Selective Anions: Experimental and DFT/TD-DFT Study. Inorg Chem 2016; 55:9707-9724. [PMID: 27617341 DOI: 10.1021/acs.inorgchem.6b01483] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work we report synthesis and characterization of three rigid and linear rodlike monometallic Ru(II) complexes based on a terpyridine ligand tightly connected to 9,10-anthraquinone electron-acceptor unit through phenyl-imidazole spacer. The motivation of designing these complexes is to enhance their excited-state lifetimes at room temperature. Interestingly it is found that all three complexes exhibit luminescence at room temperature with excited-state lifetimes in the range of 1.6-52.8 ns, depending upon the coligand as well as the solvent. Temperature-dependent luminescence investigations indicate that the energy gap between the emitting 3MLCT state and nonemitting metal-centered state 3MC in the complexes increased enormously compared with parent [Ru(tpy)2]2+. In addition, by taking advantage of the imidazole NH proton(s), which became appreciably acidic upon combined effect of electron accepting anthraquinone moiety as well as metal ion coordination, we also examined anion recognition and sensing behaviors of the complexes in organic, mixed aqueous-organic as well as in solid medium through different optical channels such as absorption, steady-state and time-resolved emission, and 1H NMR spectroscopic techniques. In conjunction with the experiment, computational investigation was also employed to examine the electronic structures of the complexes and accurate assignment of experimentally observed spectral and redox behaviors.
Collapse
Affiliation(s)
- Debiprasad Mondal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Shruti Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|
25
|
Das S, Herrmann-Westendorf F, Schacher FH, Täuscher E, Ritter U, Dietzek B, Presselt M. Controlling Electronic Transitions in Fullerene van der Waals Aggregates via Supramolecular Assembly. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21512-21521. [PMID: 27482718 DOI: 10.1021/acsami.6b06800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Morphologies crucially determine the optoelectronic properties of organic semiconductors. Therefore, hierarchical and supramolecular approaches have been developed for targeted design of supramolecular ensembles of organic semiconducting molecules and performance improvement of, e.g., organic solar cells (OSCs), organic light emitting diodes (OLEDs), and organic field-effect transistors (OFETs). We demonstrate how the photonic properties of fullerenes change with the formation of van der Waals aggregates. We identified supramolecular structures with broadly tunable absorption in the visible spectral range and demonstrated how to form aggregates with targeted visible (vis) absorption. To control supramolecular structure formation, we functionalized the C60-backbone with polar (bis-polyethylene glycol malonate-MPEG) tails, thus yielding an amphiphilic fullerene derivative that self-assembles at interfaces. Aggregates of systematically tuned size were obtained from concentrating MPEGC60 in stearic acid matrices, while different supramolecular geometries were provoked via different thin film preparation methods, namely spin-casting and Langmuir-Blodgett (LB) deposition from an air-water interface. We demonstrated that differences in molecular orientation in LB films (C2v type point group aggregates) and spin-casting (stochastic aggregates) lead to huge changes in electronic absorption spectra due to symmetry and orientation reasons. These differences in the supramolecular structures, causing the different photonic properties of spin-cast and LB films, could be identified by means of quantum chemical calculations. Employing supramolecular assembly, we propounded that molecular symmetry in fullerene aggregates is extremely important in controlling vis absorption to harvest photons efficiently, when mixed with a donor molecule, thus improving active layer design and performance of OSCs.
Collapse
Affiliation(s)
- Saunak Das
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Felix Herrmann-Westendorf
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstraße 10, Jena, 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Philosophenweg 7, Jena, 07743, Germany
| | - Eric Täuscher
- Institute for Chemistry and Biotechnology, Ilmenau University of Technology , D-98684 Ilmenau, Germany
| | - Uwe Ritter
- Institute for Chemistry and Biotechnology, Ilmenau University of Technology , D-98684 Ilmenau, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Martin Presselt
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
26
|
Schlotthauer T, Suchland B, Görls H, Parada GA, Hammarström L, Schubert US, Jäger M. Aryl-Decorated RuII Polypyridyl-type Photosensitizer Approaching NIR Emission with Microsecond Excited State Lifetimes. Inorg Chem 2016; 55:5405-16. [DOI: 10.1021/acs.inorgchem.6b00420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tina Schlotthauer
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Benedikt Suchland
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Helmar Görls
- Laboratory
of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Giovanny A. Parada
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Leif Hammarström
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Michael Jäger
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
27
|
Fischer S, Vestfrid J, Mahammed A, Herrmann-Westendorf F, Schulz M, Müller J, Kiesewetter O, Dietzek B, Gross Z, Presselt M. Photometric Detection of Nitric Oxide Using a Dissolved Iron(III) Corrole as a Sensitizer. Chempluschem 2016; 81:594-603. [DOI: 10.1002/cplu.201500553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Stefan Fischer
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Jenya Vestfrid
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Felix Herrmann-Westendorf
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Martin Schulz
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Jürgen Müller
- UST Umweltsensortechnik GmbH; Dieselstrasse 2 and 4 98716 Geschwenda Germany
| | - Olaf Kiesewetter
- UST Umweltsensortechnik GmbH; Dieselstrasse 2 and 4 98716 Geschwenda Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Zeev Gross
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Martin Presselt
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| |
Collapse
|
28
|
De la Cadena A, Pascher T, Davydova D, Akimov D, Herrmann F, Presselt M, Wächtler M, Dietzek B. Intermolecular exciton–exciton annihilation in phospholipid vesicles doped with [Ru(bpy)2dppz]2+. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Kreitner C, Erdmann E, Seidel WW, Heinze K. Understanding the Excited State Behavior of Cyclometalated Bis(tridentate)ruthenium(II) Complexes: A Combined Experimental and Theoretical Study. Inorg Chem 2015; 54:11088-104. [DOI: 10.1021/acs.inorgchem.5b01151] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christoph Kreitner
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Elisa Erdmann
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| | - Wolfram W. Seidel
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| | - Katja Heinze
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
30
|
Song C, Wang LP, Sachse T, Preiß J, Presselt M, Martínez TJ. Efficient implementation of effective core potential integrals and gradients on graphical processing units. J Chem Phys 2015; 143:014114. [DOI: 10.1063/1.4922844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenchen Song
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Lee-Ping Wang
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Torsten Sachse
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Julia Preiß
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Martin Presselt
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
31
|
Beenken W, Maes W, Kruk M, Martínez T, Presselt M. Origin of the Individual Basicity of Corrole NH-Tautomers: A Quantum Chemical Study on Molecular Structure and Dynamics, Kinetics, and Thermodynamics. J Phys Chem A 2015; 119:6875-83. [DOI: 10.1021/acs.jpca.5b02869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wichard Beenken
- Institute of Physics, Ilmenau University of Technology, P.O.
Box 100565, 98684 Ilmenau, Germany
| | - Wouter Maes
- Design & Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO), Hasselt University, Universitaire Campus, Agoralaan 1 - Building D, B-3590 Diepenbeek, Belgium
| | - Mikalai Kruk
- Physics
Department, Belarusian State Technological University, Sverdlova
str. 13a, Minsk 220006 Belarus
| | - Todd Martínez
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
| | - Martin Presselt
- Institute of Physics, Ilmenau University of Technology, P.O.
Box 100565, 98684 Ilmenau, Germany
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg
4, 07743 Jena, Germany
| |
Collapse
|
32
|
Presselt M, Dehaen W, Maes W, Klamt A, Martínez T, Beenken WJD, Kruk M. Quantum chemical insights into the dependence of porphyrin basicity on the meso-aryl substituents: thermodynamics, buckling, reaction sites and molecular flexibility. Phys Chem Chem Phys 2015; 17:14096-106. [DOI: 10.1039/c5cp01808k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The chemical and sensing properties of porphyrins are frequently tunedviathe introduction of peripheral substituents. Their interaction with the porphyrin core is investigated.
Collapse
Affiliation(s)
- Martin Presselt
- Institute of Physical Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department of Chemistry and PULSE Institute
| | - Wim Dehaen
- Molecular Design and Synthesis
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Wouter Maes
- Design & Synthesis of Organic Semiconductors (DSOS)
- Institute for Materials Research (IMO-IMOMEC)
- Hasselt University
- 3590 Diepenbeek
- Belgium
| | - Andreas Klamt
- COSMOlogic GmbH&COKG
- 51379 Leverkusen
- Germany
- University of Regensburg
- 93040 Regensburg
| | - Todd Martínez
- Department of Chemistry and PULSE Institute
- Stanford University
- California 94305
- USA
- SLAC National Accelerator Laboratory
| | | | - Mikalai Kruk
- Belarusian State Technological University
- Physics Department
- Minsk 220050
- Belarus
| |
Collapse
|