1
|
Kwon J, Reeves HL, Wang LP, Freedberg DI. Revealing elusive conformations of sucrose from hydrogen bond J-coupling in H 2O: A combined NMR and quantum mechanics study. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:742-753. [PMID: 38981694 DOI: 10.1002/mrc.5473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Hydrogen bonding is a crucial feature of biomolecules, but its characterization in glycans dissolved in aqueous solutions is challenging due to rapid hydrogen exchange between hydroxyl groups and H2O. In principle, the scalar (J) coupling constant can reveal the relative orientation of the atoms in the molecule. In contrast to J-coupling through H-bonds reported in proteins and nucleic acids, research on J-coupling through H-bonds in glycans dissolved in water is lacking. Here, we use sucrose as a model system for H-bonding studies; its structure, which consists of glucose (Glc) and fructose (Frc), is well-studied, and it is readily available. We apply the in-phase, antiphase-HSQC-TOCSY and quantify previously unreported through H-bond J-values for Frc-OH1-Glc-OH2 in H2O. While earlier reports of Brown and Levy indicate this H-bond as having only a single direction, our reported findings indicate the potential presence of two involving these same atoms, namely, G2OH ➔ F1O and F1OH ➔ G2O (where F and G stand for Frc and Glc, respectively). The calculated density functional theory J-values for the G2OH ➔ F1O agree with the experimental values. Additionally, we detected four other possible H-bonds in sucrose, which require different phi, psi (ϕ, ψ) torsion angles. The ϕ, ψ values are consistent with previous predictions of du Penhoat et al. and Venable et al. Our results will provide new insights into the molecular structure of sucrose and its interactions with proteins.
Collapse
Affiliation(s)
- Jeahoo Kwon
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hannah L Reeves
- Department of Chemistry, University of California at Davis, Davis, California, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California at Davis, Davis, California, USA
| | - Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Monroy-Cárdenas M, Gavín JA, Araya-Maturana R. Assessment of the Long-Range NMR C,H Coupling of a Series of Carbazolequinone Derivatives. Int J Mol Sci 2023; 24:17450. [PMID: 38139280 PMCID: PMC10744212 DOI: 10.3390/ijms242417450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Synthesis, the complete 1H- and 13C-NMR assignments, and the long-range C,H coupling constants (nJC,H) of some hydrogen-deficient carbazolequinones, assessed by a J-HMBC experiment, are reported. In these molecules, the protons, used as entry points for assignments, are separated by several bonds with non-protonated atom carbons. Therefore, the use of long-range NMR experiments for the assignment of the spectra is mandatory; we used HSQC and HMBC. On the other hand, the measured heteronuclear (C,H) coupling constants 2J to 5J) allow us to choose the value of the long-range delay used in the HMBC experiment less arbitrarily in order to visualize a desired correlation in the spectrum. The chemical shifts and the coupling constant values can be used as input for assignments in related chemical structures.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile;
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3480094, Chile
| | - José A. Gavín
- Instituto Universitario de Bioorgánica “Antonio González” Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Ramiro Araya-Maturana
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile;
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
3
|
Nazarski RB. On the Use of Deuterated Organic Solvents without TMS to Report 1H/ 13C NMR Spectral Data of Organic Compounds: Current State of the Method, Its Pitfalls and Benefits, and Related Issues. Molecules 2023; 28:4369. [PMID: 37298845 PMCID: PMC10254718 DOI: 10.3390/molecules28114369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The quite popular, simple but imperfect method of referencing NMR spectra to residual 1H and 13C signals of TMS-free deuterated organic solvents (referred to as Method A) is critically discussed for six commonly used NMR solvents with respect to their δH and δC values that exist in the literature. Taking into account the most reliable data, it was possible to recommend 'best' δX values for such secondary internal standards. The position of these reference points on the δ scale strongly depends on the concentration and type of analyte under study and the solvent medium used. For some solvents, chemically induced shifts (CISs) of residual 1H lines were considered, also taking into account the formation of 1:1 molecular complexes (for CDCl3). Typical potential errors that can occur as a result of improper application of Method A are considered in detail. An overview of all found δX values adopted by users of this method revealed a discrepancy of up to 1.9 ppm in δC reported for CDCl3, most likely caused by the CIS mentioned above. The drawbacks of Method A are discussed in relation to the classical use of an internal standard (Method B), two 'instrumental' schemes in which Method A is often implicitly applied, that is, the default Method C using 2H lock frequencies and Method D based on Ξ values, recommended by the IUPAC but only occasionally used for 1H/13C spectra, and external referencing (Method E). Analysis of current needs and opportunities for NMR spectrometers led to the conclusion that, for the most accurate application of Method A, it is necessary to (a) use dilute solutions in a single NMR solvent and (b) to report δX data applied for the reference 1H/13C signals to the nearest 0.001/0.01 ppm to ensure the precise characterization of new synthesized or isolated organic systems, especially those with complex or unexpected structures. However, the use of TMS in Method B is strongly recommended in all such cases.
Collapse
Affiliation(s)
- Ryszard B Nazarski
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska, 90-236 Łódź, Poland
| |
Collapse
|
4
|
Hoyt EM, Smith LO, Crittenden DL. Simple, accurate, adjustable-parameter-free prediction of NMR shifts for molecules in solution. Phys Chem Chem Phys 2023; 25:9952-9957. [PMID: 36951928 DOI: 10.1039/d3cp00721a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Accurate prediction of NMR shifts is invaluable for interpreting and assigning NMR spectra, especially for complex applications such as determining the identity of unknown substances or resolving stereochemical assignments. Statistical linear regression models have proven effective for accurately correlating density functional theory predictions of chemical shieldings with experimentally-measured shifts, but lack transferability - they must be reparameterised using a reasonably extensive training set at each level of theory and for each choice of NMR solvent. We have previously introduced a novel two-point "shift-and-scale" correction procedure for gas phase shieldings that overcomes these limitations without significant loss of accuracy. In this work, we demonstrate that this approach is equally applicable for predicting solution-phase shifts from computed gas phase shieldings, using acetaldehyde as an experimentally and computationally convenient reference system. We also present all of the required experimental reference data to enable this approach to be used for any target analyte in a range of commonly used NMR solvents (chloroform, dichloromethane, acetonitrile, methanol, acetone, DMSO, D2O, benzene, pyridine).
Collapse
Affiliation(s)
- Emlyn M Hoyt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Lachlan O Smith
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Deborah L Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|
5
|
Domagała M, Jabłoński M, Dubis AT, Zabel M, Pfitzner A, Palusiak M. Testing of Exchange-Correlation Functionals of DFT for a Reliable Description of the Electron Density Distribution in Organic Molecules. Int J Mol Sci 2022; 23:ijms232314719. [PMID: 36499046 PMCID: PMC9740346 DOI: 10.3390/ijms232314719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Researchers carrying out calculations using the DFT method face the problem of the correct choice of the exchange-correlation functional to describe the quantities they are interested in. This article deals with benchmark calculations aimed at testing various exchange-correlation functionals in terms of a reliable description of the electron density distribution in molecules. For this purpose, 30 functionals representing all rungs of Jacob's Ladder are selected and then the values of some QTAIM-based parameters are compared with their reference equivalents obtained at the CCSD/aug-cc-pVTZ level of theory. The presented results show that the DFT method undoubtedly has the greatest problems with a reliable description of the electron density distribution in multiple strongly polar bonds, such as C=O, and bonds associated with large electron charge delocalization. The performance of the tested functionals turned out to be unsystematic. Nevertheless, in terms of a reliable general description of QTAIM-based parameters, the M11, SVWN, BHHLYP, M06-HF, and, to a slightly lesser extent, also BLYP, B3LYP, and X3LYP functionals turned out to be the worst. It is alarming to find the most popular B3LYP functional in this group. On the other hand, in the case of the electron density at the bond critical point, being the most important QTAIM-based parameter, the M06-HF functional is especially discouraged due to the very poor description of the C=O bond. On the contrary, the VSXC, M06-L, SOGGA11-X, M06-2X, MN12-SX, and, to a slightly lesser extent, also TPSS, TPSSh, and B1B95 perform well in this respect. Particularly noteworthy is the overwhelming performance of double hybrids in terms of reliable values of bond delocalization indices. The results show that there is no clear improvement in the reliability of describing the electron density distribution with climbing Jacob's Ladder, as top-ranked double hybrids are also, in some cases, able to produce poor values compared to CCSD.
Collapse
Affiliation(s)
- Małgorzata Domagała
- Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
| | - Mirosław Jabłoński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-056-611-4695
| | - Alina T. Dubis
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Manfred Zabel
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Arno Pfitzner
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Marcin Palusiak
- Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Nazarski RB. Summary of DFT calculations coupled with current statistical and/or artificial neural network (ANN) methods to assist experimental NMR data in identifying diastereomeric structures. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Kupka T, Broda MA, Wieczorek PP. What is the form of muscimol from fly agaric mushroom (Amanita muscaria) in water? An insight from NMR experiment supported by molecular modeling. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:584-593. [PMID: 31912552 DOI: 10.1002/mrc.4990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The biologically active alkaloid muscimol is present in fly agaric mushroom (Amanita muscaria), and its structure and action is related to human neurotransmitter γ -aminobutyric acid (GABA). The current study reports on determination of muscimol form present in water solution using multinuclear 1 H and 13 C nuclear magnetic resonance (NMR) experiments supported by density functional theory molecular modeling. The structures of three forms of free muscimol molecule both in the gas phase and in the presence of water solvent, modeled by polarized continuous model, and nuclear magnetic isotropic shieldings, the corresponding chemical shifts, and indirect spin-spin coupling constants were calculated. Several J-couplings observed in proton and carbon NMR spectra, not available before, are reported. The obtained experimental spectra, supported by theoretical calculations, favor the zwitterion form of muscimol in water. This structure differs from NH isomer, previously determined in dimethyl sulfoxide (DMSO) solution. In addition, positions of signals C3 and C5 are reversed in both solvents.
Collapse
Affiliation(s)
- Teobald Kupka
- Faculty of Chemistry, University of Opole, Opole, Poland
| | | | | |
Collapse
|
8
|
Ciechańska M, Jóźwiak A, Nazarski RB, Skorupska EA. Unexpected Rearrangement of Dilithiated Isoindoline-1,3-diols into 3-Aminoindan-1-ones via N-Lithioaminoarylcarbenes: A Combined Synthetic and Computational Study. J Org Chem 2019; 84:11425-11440. [PMID: 31449415 DOI: 10.1021/acs.joc.9b01217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of 2-aryl-3-hydroxyisoindolin-1-ones with the s-BuLi·TMEDA system in THF at -78 °C, affording a series of diastereomeric 3-aminoindan-1-ones via a novel rearrangement of the isoindolinone scaffold, is reported. It is proposed that α-elimination of LiOH from the transient N,O-dilithiated hemiaminal carbenoids leads to the formation of singlet carbenes followed by their trapping via an intramolecular C-H insertion. An alternative explanation based on an intramolecular Mannich reaction seem much less probable. A mechanistic-type study that combines spectroscopic data of the products and calculation results, with a special focus on the diverse lithiated intermediates that are most likely to engage in the title process (particularly those with internal Li bonds), is presented. The MP2 approach, including the NPA and QTAIM data, provided insight into structures and properties of all these species. Two reaction routes A and B appeared to be possible for the postulated carbene mechanism. An unusual metamorphosis of the CCN atom triad, from a near sp 1-azaallene-type in more stable noncarbene Li enolates to a roughly sp2 type in their carbene keto tautomers, is recognized in one of these pathways (route B). Dominant forms of resonance structures for the aforementioned tautomeric systems that have seven-membered quasi rings stabilized by Li+ ions bridging the N and carbonyl O atoms are indicated. Large computational difficulties arising from a huge impact of internal Li+ complexation on conformational preferences and electronic properties of carbonyl group-bearing lithium derivatives are also discussed. The new γ-keto carbene species under study belong to a subclass of acyclic aminoarylcarbenes.
Collapse
Affiliation(s)
- Magdalena Ciechańska
- Department of Organic Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Łódź , Poland
| | - Andrzej Jóźwiak
- Department of Organic Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Łódź , Poland
| | - Ryszard B Nazarski
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry , University of Lodz , Pomorska 163/165 , 90-236 Łódź , Poland
| | - Ewa A Skorupska
- Department of Organic Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Łódź , Poland
| |
Collapse
|
9
|
Gholivand K, Maghsoud Y, Hosseini M, Kahnouji M. A theoretical study on 1H/13C/31P NMR chemical shifts, and the correlation between 2JP–H and the electronic structure of different phosphoryl benzamide derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Kim HY, Saurí J, Cohen RD, Martin GE. Observation of untoward 3 J cc correlations in 1,1-ADEQUATE spectra of pyrimidine analogs: Avoiding potential interpretation pitfalls. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:775-781. [PMID: 29603782 DOI: 10.1002/mrc.4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Recently, it has been reported that large n JCC correlations can sometimes be observed in 1,1-ADEQUATE spectra with significant intensity, which opens the possibility of structural misassignment. In this work, we have focused on pyrimidine-based compounds, which exhibit multiple bond correlations in the 1,1-ADEQUATE experiment as a consequence of 3 JCC coupling constants greater than 10 Hz. Results are supported by both the experimental measurement of 3 JCC coupling constants in question using J-modulated-ADEQUATE and density functional theory calculations.
Collapse
Affiliation(s)
- Hai-Young Kim
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Josep Saurí
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Ryan D Cohen
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, NJ, 07065, USA
| | - Gary E Martin
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, NJ, 07065, USA
| |
Collapse
|
11
|
Juaristi E, Notario R. Stereoelectronic Interactions Exhibited by 1 J C-H One-Bond Coupling Constants and Examination of the Possible Existence of the Intramolecular α-Effect in Six-Membered Oxygen-Containing Heterocycles. J Org Chem 2018; 83:3293-3298. [PMID: 29470070 DOI: 10.1021/acs.joc.8b00220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For more than five decades since its original conception, the α-effect has been advocated with arguments based on kinetic reactivity data. The present study was undertaken with the aim of gathering theoretical information on thermodynamic bond energy data in systems that could in principle give rise to intramolecular α-effects. In particular, oxygen-containing six-membered rings oxa-, 1,2-dioxa-, 1,3-dioxa-, 1,2,4-trioxa-, and 1,2,4,5-tetraoxacyclohexane were optimized at the B3LYP/aug-cc-pVTZ level of theory, and the magnitude of all C-H one-bond coupling constants was determined. Furthermore, hyperconjugative interactions were evaluated with Natural Bond Orbital analysis. Analysis of the collected information leads to the conclusion that ether oxygens are apparently better donors than peroxide oxygens; that is, the n(O) → σ*(C-Hax) two-orbital/two-electron interaction seems to be stronger than the n(O-O) → σ*(C-Hax) two-orbital/two-electron interaction, and this finding is contrary to expectations in terms of the α-effect.
Collapse
Affiliation(s)
- Eusebio Juaristi
- Departamento de Química , Centro de Investigación y de Estudios Avanzados , Av IPN No. 2508 , 07360 Ciudad de México , Mexico.,El Colegio Nacional , Luis González Obregón No. 23, Centro Histórico , 06020 Ciudad de México , Mexico
| | - Rafael Notario
- Instituto de Química Física "Rocasolano" , CSIC, c/Serrano 119 , 28006 Madrid , Spain
| |
Collapse
|