1
|
Xue J, Ji M, Lu Y, Pan D, Yang X, Yang X, Xu Z. The impact of chemical properties of the solid-liquid-adsorbate interfaces on the entropy-enthalpy compensation involved in adsorption. Phys Chem Chem Phys 2024; 26:8704-8715. [PMID: 38415756 DOI: 10.1039/d3cp05669d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Despite extensive studies on the thermodynamic mechanism governing molecular adsorption at the solid-water interface, a comprehensive understanding of the crucial role of interface properties in mediating the entropy-enthalpy compensation during adsorption is lacking, particularly at a quantitative level. Herein, we employed two types of surface models (hydroxyapatite and graphene) along with a series of amino acids to successfully elucidate how distinct interfacial features dictate the delicate balance between entropy and enthalpy variations. The adsorption of all amino acids on the hydroxyapatite surface is an enthalpy-dominated process, where the water-induced enthalpic component of the free energy and the surface-adsorbate electrostatic interaction term alternatively act as the driving force for adsorption in different regions of the surface. Although favorable interactions are observed between amino acids and the graphene surface, the entropy-enthalpy compensation exhibits dependence on the molecular size of the adsorbates. For small amino acids, favorable enthalpy changes predominantly determine their adsorption behavior; however, larger amino acids tend to bind more tightly with the graphene surface, which is thermodynamically dominated by the entropy variations despite the structural characteristics of amino acids. This study reveals specific entropy-enthalpy mechanisms underlying amino acid adsorption at the solid-liquid interface, providing guidance for surface design and synthesis of new biomolecules.
Collapse
Affiliation(s)
- Jinling Xue
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mingyu Ji
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuanyuan Lu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Dan Pan
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
- Zhangjiagang Institute of Nanjing Tech University, Zhangjiagang 215699, China
| |
Collapse
|
2
|
Sodomaco S, Gómez S, Giovannini T, Cappelli C. Computational Insights into the Adsorption of Ligands on Gold Nanosurfaces. J Phys Chem A 2023; 127:10282-10294. [PMID: 37993110 DOI: 10.1021/acs.jpca.3c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
We study the adsorption process of model peptides, nucleobases, and selected standard ligands on gold through the development of a computational protocol based on fully atomistic classical molecular dynamics (MD) simulations combined with umbrella sampling techniques. The specific features of the interface components, namely, the molecule, the metallic substrate, and the solvent, are taken into account through different combinations of force fields (FFs), which are found to strongly affect the results, especially changing absolute and relative adsorption free energies and trends. Overall, noncovalent interactions drive the process along the adsorption pathways. Our findings also show that a suitable choice of the FF combinations can shed light on the affinity, position, orientation, and dynamic fluctuations of the target molecule with respect to the surface. The proposed protocol may help the understanding of the adsorption process at the microscopic level and may drive the in-silico design of biosensors for detection purposes.
Collapse
Affiliation(s)
- Sveva Sodomaco
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
3
|
Devémy J, Dequidt A, Malfreyt P. A Consistent Thermodynamic Characterization of the Adsorption Process through the Calculation of Free Energy Contributions. J Phys Chem B 2023. [PMID: 37279165 DOI: 10.1021/acs.jpcb.3c01947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We apply in this study different methodologies based on thermodynamic integration (TI), free energy perturbation (FEP), and potential of mean force (PMF) to address the challenging issue of the calculation of the free energy of adsorption. A model system composed of a solid substrate, an adsorbate, and solvent particles is specifically designed to reduce the dependence of our free energy results on the sampling of the phase space and the choice of the pathway. The reliability and efficiency of these alchemical free energy simulations are established through the closure of a thermodynamic cycle describing the adsorption process in solution and in a vacuum. We complete this study by the calculation of free energy contributions related to phenomena of desorption of solvent molecules and desolvation of the adsorbate upon adsorption. This calculation relies on the work of adhesion, the interfacial tension of the liquid-vapor of the solvent, and the free energy of solvation of the substrate. The different ways of calculating the free energy of adsorption are in excellent agreement and could complete experiments in the field of adsorption by giving quantitative data on the different energy contributions involved in the process.
Collapse
Affiliation(s)
- Julien Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Alain Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
|
5
|
Ma Y, Hua T, Trinh TA, Wang R, Chew JW. Molecular dynamics simulation of the competitive adsorption behavior of effluent organic matters by heated aluminum oxide particles (HAOPs). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Ma Y, Velioğlu S, Yin Z, Wang R, Chew JW. Molecular dynamics investigation of membrane fouling in organic solvents. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Michaelis M, Delle Piane M, Rothenstein D, Perry CC, Colombi Ciacchi L. Lessons from a Challenging System: Accurate Adsorption Free Energies at the Amino Acid/ZnO Interface. J Chem Theory Comput 2021; 17:4420-4434. [PMID: 34191508 DOI: 10.1021/acs.jctc.1c00165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We undertake steps to overcome four challenges that have hindered the understanding of ZnO/biomolecule interfaces at the atomic scale: parametrization of a classical force field, ZnO surface termination and amino acid protonation state in methanol, and convergence of enhanced sampling molecular dynamics simulations. We predict adsorption free energies for histidine, serine, cysteine, and tryptophan in remarkable agreement with experimental measurements obtained via a novel indicator-displacement assay. Adsorption is driven by direct surface/amino-acid interactions mediated by terminal hydroxyl groups and stabilized by strongly structured methanol solvation shells.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, Am Fallturm 1, Bremen 28359, Germany.,Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Massimo Delle Piane
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, Am Fallturm 1, Bremen 28359, Germany.,Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Dirk Rothenstein
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, Heisenbergstrasse 3, Stuttgart 70569, Germany
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, Am Fallturm 1, Bremen 28359, Germany
| |
Collapse
|
8
|
Garai B, Shetty D, Skorjanc T, Gándara F, Naleem N, Varghese S, Sharma SK, Baias M, Jagannathan R, Olson MA, Kirmizialtin S, Trabolsi A. Taming the Topology of Calix[4]arene-Based 2D-Covalent Organic Frameworks: Interpenetrated vs Noninterpenetrated Frameworks and Their Selective Removal of Cationic Dyes. J Am Chem Soc 2021; 143:3407-3415. [DOI: 10.1021/jacs.0c12125] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Dinesh Shetty
- Department of Chemistry & Center for Catalysis and Separations (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | | | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain
| | | | | | - Sudhir Kumar Sharma
- Engineering Division, New York University Abu Dhabi (NYUAD), Saadiyat Island 129188, United Arab Emirates
| | | | - Ramesh Jagannathan
- Engineering Division, New York University Abu Dhabi (NYUAD), Saadiyat Island 129188, United Arab Emirates
| | - Mark A. Olson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | | | | |
Collapse
|
9
|
Wang X, Yang X, Chen H, Yang X, Xu Z. Entropy-Enthalpy Compensation in Peptide Adsorption on Solid Surfaces: Dependence on Surface Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10822-10829. [PMID: 32813538 DOI: 10.1021/acs.langmuir.0c01845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although protein adsorption at the solid-water interface is of immense importance, understanding the crucial role of the water phase in mediating protein-surface interactions is lacking, particularly due to the lack of fundamental thermodynamic data. Herein, we have performed complicated free energy calculations and successfully extracted the entropy and enthalpy changes of molecular adsorption on solids. Using the gold and graphene as the surface models with distinct affinities to the water phase, we successfully unravel the sharply opposite manners of entropy-enthalpy compensation in driving water and tripeptide adsorptions on two surfaces. Though the thermodynamic features of water adsorption on surface are enthalpically dominated based on the positions of free energy barriers and minima, the favorable entropy term significantly decreases the free energy barrier and further stabilizes the adsorbate at the adsorption site on the graphene surface. For the peptide, the shape of the adsorption free energy profile is jointly determined by the enthalpy and entropy changes, which, however, alternatively act the driving force to promote the peptide adsorption on the Au surface and graphene surface. The distinct structural and dynamic properties of solid-liquid interfaces account for the special role of the interfacial water phase in regulating the competitive relationship between the entropy and enthalpy variations.
Collapse
Affiliation(s)
- Xiang Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Huijun Chen
- Obstetrics and Gynecology Department, Zhongnan Hospital of Wuhan University, #169 East Lake Road, Wuchang District, Wuhan 430017, China
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
- Zhangjiagang Institute of Nanjing Tech University, Jiangfanlu 8, Zhangjiagang 215699, China
| |
Collapse
|
10
|
A novel approach to calculate protein adsorption isotherms by molecular dynamics simulations. J Chromatogr A 2020; 1620:460940. [PMID: 32183982 DOI: 10.1016/j.chroma.2020.460940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/21/2022]
Abstract
Protein adsorption plays a role in many fields, where in some it is desirable to maximize the amount adsorbed, in others it is important to avoid protein adsorption altogether. Therefore, theoretical methods are needed for a better understanding of the underlying processes and for the prediction of adsorption quantities. In this study, we present a proof-of-concept that the calculation of protein adsorption isotherms by molecular dynamics (MD) simulations is possible using the steric mass action (SMA) theory. Here we are investigating the adsorption of bovine/human serum albumin (BSA/HSA) and hemoglobin (bHb) on Q Sepharose FF. Protein adsorption isotherms were experimentally determined and modeled. Free energy profiles of protein adsorption were calculated by MD simulations to determine the Henry isotherms as a first step. Although each simulation contained only one protein, notably the calculated isotherms are in reasonably good agreement with the experimental isotherms. Hence, we could show that MD data can lead to protein adsorption data in good agreement with experimental data. The results were critically discussed and requirements for future applications are identified.
Collapse
|
11
|
Xu Z, Yang X, Wei Q, Zhao W, Cui B, Yang X, Sahai N. Quantitatively Identifying the Roles of Interfacial Water and Solid Surface in Governing Peptide Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7932-7941. [PMID: 29888924 DOI: 10.1021/acs.langmuir.8b01189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Although the water phase at the surface/water interface has been recognized as three types: bulk water, intermediate water phase and surface-bound water layers, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution from the surface-peptide interactions is thermodynamically favorable to peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, due to the controlling contribution of peptide-surface interaction in the intermediate water phase. The surface-bound water layers are observed as the origin of bioresistance of solid surfaces toward the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force, in contrast to the observation on the hydrophilic surface.
Collapse
Affiliation(s)
| | | | | | - Weilong Zhao
- Department of Polymer Science , University of Akron , Akron , Ohio 44325-3909 , United States
| | | | | | - Nita Sahai
- Department of Polymer Science , University of Akron , Akron , Ohio 44325-3909 , United States
| |
Collapse
|