1
|
Rooney CHE, Gamliel A, Shaul D, Tyler DJ, Grist JT, Katz‐Brull R. Directly Bound Deuterons Increase X-Nuclei Hyperpolarization using Dynamic Nuclear Polarization. Chemphyschem 2023; 24:e202300144. [PMID: 37431622 PMCID: PMC10947409 DOI: 10.1002/cphc.202300144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Deuterated 13 C sites in sugars (D-glucose and 2-deoxy-D-glucose) showed 6.3-to-17.5-fold higher solid-state dynamic nuclear polarization (DNP) levels than their respective protonated sites at 3.35T. This effect was found to be unrelated to the protonation of the bath. Deuterated 15 N in sites bound to exchangeable protons ([15 N2 ]urea) showed a 1.3-fold higher polarization than their respective protonated sites at the same magnetic field. This relatively smaller effect was attributed to incomplete deuteration of the 15 N sites due to the solvent mixture. For a 15 N site that is not bound to protons or deuterons ([15 N]nitrate), deuteration of the bath did not affect the polarization level. These findings suggest a phenomenon related to DNP of X-nuclei directly bound to deuteron(s) as opposed to proton(s). It appears that direct binding to deuterons increases the solid-state DNP polarization level of X-nuclei which are otherwise bound to protons.
Collapse
Affiliation(s)
| | - Ayelet Gamliel
- Department of RadiologyHadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalem9112011Israel
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| | - David Shaul
- Department of RadiologyHadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalem9112011Israel
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| | - Damian J. Tyler
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchDivision of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - James T. Grist
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchDivision of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of RadiologyOxford University HospitalsOxfordUK
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Rachel Katz‐Brull
- Department of RadiologyHadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalem9112011Israel
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| |
Collapse
|
2
|
Gamliel A, Shaul D, Gomori JM, Katz‐Brull R. Signal enhancement of hyperpolarized 15 N sites in solution-increase in solid-state polarization at 3.35 T and prolongation of relaxation in deuterated water mixtures. NMR IN BIOMEDICINE 2022; 35:e4787. [PMID: 35704397 PMCID: PMC9787933 DOI: 10.1002/nbm.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Hyperpolarized 15 N sites have been found to be promising for generating long-lived hyperpolarized states in solution, and present a promising approach for utilizing dissolution-dynamic nuclear polarization (dDNP)-driven hyperpolarized MRI for imaging in biology and medicine. Specifically, 15 N sites with directly bound protons were shown to be useful when dissolved in D2 O. The purpose of the current study was to further characterize and increase the visibility of such 15 N sites in solutions that mimic an intravenous injection during the first cardiac pass in terms of their H2 O:D2 O composition. The T1 values of hyperpolarized 15 N in [15 N2 ]urea and [15 N]NH4 Cl demonstrated similar dependences on the H2 O:D2 O composition of the solution, with a T1 of about 140 s in 100% D2 O, about twofold shortening in 90% and 80% D2 O, and about threefold shortening in 50% D2 O. [13 C]urea was found to be a useful solid-state 13 C marker for qualitative monitoring of the 15 N polarization process in a commercial pre-clinical dDNP device. Adding trace amounts of Gd3+ to the polarization formulation led to higher solid-state polarization of [13 C]urea and to higher polarization levels of [15 N2 ]urea in solution.
Collapse
Affiliation(s)
- Ayelet Gamliel
- Department of Radiology, Hadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| | - David Shaul
- Department of Radiology, Hadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| | - J. Moshe Gomori
- Department of Radiology, Hadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Rachel Katz‐Brull
- Department of Radiology, Hadassah Medical Organization and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- The Wohl Institute for Translational MedicineHadassah Medical OrganizationJerusalemIsrael
| |
Collapse
|
3
|
Somai V, Kreis F, Gaunt A, Tsyben A, Chia ML, Hesse F, Wright AJ, Brindle KM. Genetic algorithm-based optimization of pulse sequences. Magn Reson Med 2022; 87:2130-2144. [PMID: 34866238 DOI: 10.1002/mrm.29110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The performance of pulse sequences in vivo can be limited by fast relaxation rates, magnetic field inhomogeneity, and nonuniform spin excitation. We describe here a method for pulse sequence optimization that uses a stochastic numerical solver that in principle is capable of finding a global optimum. The method provides a simple framework for incorporating any constraint and implementing arbitrarily complex cost functions. Efficient methods for simulating spin dynamics and incorporating frequency selectivity are also described. METHODS Optimized pulse sequences for polarization transfer between protons and X-nuclei and excitation pulses that eliminate J-coupling modulation were evaluated experimentally using a surface coil on phantoms, and also the detection of hyperpolarized [2-13 C]lactate in vivo in the case of J-coupling modulation-free excitation. RESULTS The optimized polarization transfer pulses improved the SNR by ~50% with a more than twofold reduction in the B1 field, and J-coupling modulation-free excitation was achieved with a more than threefold reduction in pulse length. CONCLUSION This process could be used to optimize any pulse when there is a need to improve the uniformity and frequency selectivity of excitation as well as to design new pulses to steer the spin system to any desired achievable state.
Collapse
Affiliation(s)
- Vencel Somai
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Felix Kreis
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Adam Gaunt
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anastasia Tsyben
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ming Li Chia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Fiedorowicz M, Wieteska M, Rylewicz K, Kossowski B, Piątkowska-Janko E, Czarnecka AM, Toczylowska B, Bogorodzki P. Hyperpolarized 13C tracers: Technical advancements and perspectives for clinical applications. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Lees H, Millan M, Ahamed F, Eskandari R, Granlund KL, Jeong S, Keshari KR. Multi-sample measurement of hyperpolarized pyruvate-to-lactate flux in melanoma cells. NMR IN BIOMEDICINE 2021; 34:e4447. [PMID: 33314422 PMCID: PMC8288443 DOI: 10.1002/nbm.4447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Hyperpolarized [1-13 C] pyruvate can be used to examine the metabolic state of cancer cells, highlighting a key metabolic characteristic of cancer: the upregulated metabolic flux to lactate, even in the presence of oxygen (Warburg effect). Thus, the rate constant of 13 C exchange of pyruvate to lactate, kPL , can serve as a metabolic biomarker of cancer presence, aggressiveness and therapy response. Established in vitro hyperpolarized experiments dissolve the probe for each cell sample independently, an inefficient process that consumes excessive time and resources. Expanding on our previous development of a microcoil with greatly increased detection sensitivity (103 -fold) compared with traditional in vitro methods, we present a novel microcoil equipped with a 10-μL vertical reservoir and an experimental protocol utilizing deuterated dissolution buffer to measure metabolic flux in multiple mass-limited cell suspension samples using a single dissolution. This method increases efficiency and potentially reduces the methodological variability associated with hyperpolarized experiments. This technique was used to measure pyruvate-to-lactate flux in melanoma cells to assess BRAF-inhibition treatment response. There was a significant reduction of kPL in BRAFV600E cells following 24 and 48 hours of treatment with 2 μM vemurafenib (P ≤ .05). This agrees with significant changes observed in the pool sizes of extracellular lactate (P ≤ .05) and glucose (P ≤ .001) following 6 and 48 hours of treatment, respectively, and a significant reduction in cell proliferation following 72 hours of treatment (P ≤ .01). BRAF inhibition had no significant effect on the metabolic flux of BRAFWT cells. These data demonstrate a 6-8-fold increase in efficiency for the measurement of kPL in cell suspension samples compared with traditional hyperpolarized in vitro methods.
Collapse
Affiliation(s)
- Hannah Lees
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Micaela Millan
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, USA
| | - Fayyaz Ahamed
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kristin L. Granlund
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sangmoo Jeong
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kayvan R. Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Kreis F, Wright AJ, Somai V, Katz‐Brull R, Brindle KM. Increasing the sensitivity of hyperpolarized [ 15 N 2 ]urea detection by serial transfer of polarization to spin-coupled protons. Magn Reson Med 2020; 84:1844-1856. [PMID: 32153046 PMCID: PMC8629126 DOI: 10.1002/mrm.28241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Hyperpolarized 15 N-labeled molecules have been proposed as imaging agents for investigating tissue perfusion and pH. However, the sensitivity of direct 15 N detection is limited by the isotope's low gyromagnetic ratio. Sensitivity can be increased by transferring 15 N hyperpolarization to spin-coupled protons provided that there is not significant polarization loss during transfer. However, complete polarization transfer would limit the temporal window for imaging to the order of the proton T1 (2-3 s). To exploit the long T1 offered by storing polarization in 15 N and the higher sensitivity of 1 H detection, we have developed a pulse sequence for partial polarization transfer. METHODS A polarization transfer pulse sequence was modified to allow partial polarization transfer, as is required for dynamic measurements, and that can be implemented with inhomogeneous B1 fields, as is often the case in vivo. The sequence was demonstrated with dynamic spectroscopy and imaging measurements with [15 N2 ]urea. RESULTS When compared to direct 15 N detection, the sequence increased the signal-to-noise ratio (SNR) by a factor of 1.72 ± 0.25, where both experiments depleted ~20% of the hyperpolarization (>10-fold when 100% of the hyperpolarization is used). Simulations with measured cross relaxation rates showed that this sequence gave up to a 50-fold increase in urea proton polarization when compared to spontaneous polarization transfer via cross relaxation. CONCLUSION The sequence gave an SNR increase that was close to the theoretical limit and can give a significant SNR benefit when compared to direct 13 C detection of hyperpolarized [13 C]urea.
Collapse
Affiliation(s)
- Felix Kreis
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Vencel Somai
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Rachel Katz‐Brull
- Department of RadiologyFaculty of MedicineHadassah Medical CenterHebrew University of JerusalemJerusalemIsrael
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
7
|
Fekete M, Ahwal F, Duckett SB. Remarkable Levels of 15N Polarization Delivered through SABRE into Unlabeled Pyridine, Pyrazine, or Metronidazole Enable Single Scan NMR Quantification at the mM Level. J Phys Chem B 2020; 124:4573-4580. [PMID: 32383603 PMCID: PMC7277555 DOI: 10.1021/acs.jpcb.0c02583] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While many drugs and metabolites contain nitrogen, harnessing their diagnostic 15N NMR signature for their characterization is underutilized because of inherent detection difficulties. Here, we demonstrate how precise ultralow field signal amplification by reversible exchange (±0.2 mG) in conjunction parahydrogen and an iridium precatalyst of the form IrCl(COD)(NHC) with the coligand d9-benzylamine allows the naturally abundant 15N NMR signatures of pyridine, pyrazine, metronidazole, and acetonitrile to be readily detected at 9.4 T in single NMR observations through >50% 15N polarization levels. These signals allow for rapid and precise reagent quantification via a response that varies linearly over the 2-70 mM concentration range.
Collapse
Affiliation(s)
- Marianna Fekete
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
8
|
Hundshammer C, Grashei M, Greiner A, Glaser SJ, Schilling F. pH Dependence of T 1 for 13 C-Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging. Chemphyschem 2019; 20:798-802. [PMID: 30790394 DOI: 10.1002/cphc.201801098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/07/2019] [Indexed: 01/18/2023]
Abstract
Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin-lattice relaxation time (T1 ), which is on the order of a few tens of seconds. Here, we analyzed the pH-dependence of T1 for commonly used HP 13 C-labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0 =1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0 =1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP-state.
Collapse
Affiliation(s)
- Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich.,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching.,Graduate School of Bioengineering, Technical University of Munich, Boltzmannstr. 11, 85748, Garching
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich
| | - Alexandra Greiner
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching
| | - Steffen J Glaser
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich
| |
Collapse
|
9
|
Gamliel A, Uppala S, Sapir G, Harris T, Nardi-Schreiber A, Shaul D, Sosna J, Gomori JM, Katz-Brull R. Hyperpolarized [ 15N]nitrate as a potential long lived hyperpolarized contrast agent for MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:188-195. [PMID: 30660069 DOI: 10.1016/j.jmr.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Reports on gadolinium deposits in the body and brains of adults and children who underwent contrast-enhanced MRI examinations warrant development of new, metal free, contrast agents for MRI. Nitrate is an abundant ion in mammalian biochemistry and sodium nitrate can be safely injected intravenously. We show that hyperpolarized [15N]nitrate can potentially be used as an MR tracer. The 15N site of hyperpolarized [15N]nitrate showed a T1 of more than 100 s in aqueous solutions, which was prolonged to more than 170 s below 20 °C. Capitalizing on this effect for polarization storage we obtained a visibility window of 9 min in blood. Conversion to [15N]nitrite, the bioactive reduced form of nitrate, was not observed in human blood and human saliva in this time frame. Thus, [15N]nitrate may serve as a long-lived hyperpolarized tracer for MR. Due to its ionic nature, the immediate applications appear to be perfusion and tissue retention imaging.
Collapse
Affiliation(s)
- Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Talia Harris
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
10
|
Cho A, Eskandari R, Miloushev VZ, Keshari KR. A non-synthetic approach to extending the lifetime of hyperpolarized molecules using D 2O solvation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 295:57-62. [PMID: 30099234 PMCID: PMC6131049 DOI: 10.1016/j.jmr.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Although dissolution dynamic nuclear polarization is a robust technique to significantly increase magnetic resonance signal, the short T1 relaxation time of most 13C-nuclei limits the timescale of hyperpolarized experiments. To address this issue, we have characterized a non-synthetic approach to extend the hyperpolarized lifetime of 13C-nuclei in close proximity to solvent-exchangeable protons. Protons exhibit stronger dipolar relaxation than deuterium, so dissolving these compounds in D2O to exchange labile protons with solvating deuterons results in longer-lived hyperpolarization of the 13C-nucleus 2-bonds away. 13C T1 and T2 times were longer in D2O versus H2O for all molecules in this study. This phenomenon can be utilized to improve hyperpolarized signal-to-noise ratio as a function of longer T1, and enhanced spectral and imaging resolution via longer T2.
Collapse
Affiliation(s)
- Andrew Cho
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York City, NY 10065, United States; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York City, NY 10065, United States.
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States.
| | - Vesselin Z Miloushev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States.
| | - Kayvan R Keshari
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York City, NY 10065, United States; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States.
| |
Collapse
|