1
|
Gao H, Zhang T, Lei Y, Jiao D, Yu B, Yuan WZ, Ji J, Jin Q, Ding D. An Organophosphorescence Probe with Ultralong Lifetime and Intrinsic Tissue Selectivity for Specific Tumor Imaging and Guided Tumor Surgery. Angew Chem Int Ed Engl 2024; 63:e202406651. [PMID: 38781352 DOI: 10.1002/anie.202406651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues. This study addresses these gaps and reveals that longer lifetimes effectively increase the signal intensity, whereas longer wavelengths enhance the penetration depth. Conversely, a strong emission intensity with a short lifetime does not necessarily yield robust imaging signals. Building upon these findings, an organo-phosphorescent material with a lifetime of 0.94 s was designed for tumor imaging. Remarkably, the phosphorescent signals of various organic nanoparticles are nearly extinguished in blood-rich organs because of the quenching effect of iron ions. Moreover, for the first time, we demonstrated that iron ions universally quench the phosphorescence of organic room-temperature phosphorescent materials, which is an inherent property of such substances. Leveraging this property, both the normal liver and hepatitis tissues exhibit negligible phosphorescent signals, whereas liver tumors display intense phosphorescence. Therefore, phosphorescent materials, unlike chemiluminescent or fluorescent materials, can exploit this unique inherent property to selectively distinguish liver tumor tissues from normal tissues without additional modifications or treatments.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Tingting Zhang
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Di Jiao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wang Zhang Yuan
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Guo J, Liu J, Zhao Y, Wang Y, Ma L, Jiang J. Time-dependent and clustering-induced phosphorescence, mechanochromism, structural-function relationships, and advanced information encryption based on isomeric effects and host-guest doping. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124449. [PMID: 38754206 DOI: 10.1016/j.saa.2024.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
To explore the intrinsic mechanism of pure organic room temperature and clustering-induced phosphorescence and investigate mechanochromism and structural-function relationships, here, 4-(2-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lo-CzAD), 4-(3-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lm-CzAD), and 4-(4-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lp-CzAD) were designed and synthesized by choosing self-made carbazole and 3, 5-dicyanopyridine (DCP) unit as electron acceptor and electron donor in sequence. Compared with crystals Lm-CzAD and Lp-CzAD, crystal Lo-CzAD shows better room temperature phosphorescence (RTP) performance, with RTP lifetimes of 187.16 ms, as well as afterglows 1s, which are attributed to twisted carbazole unit and donor-acceptor (D-A) molecular conformation, big crystal density and spin orbit coupling constant ξ (S1 → T1 and S1 → T2), as well as intermolecular H type stacking and small ξ (S0 → T1). By choosing urea and PPh3 as host materials and tuning doping ratio, four doping systems were successfully constructed, significantly improving RTP performance of Lo-CzAD and Lp-CzAD, as well as showing different fluorescence and RTP. The lifetimes and afterglows of pure organic Urea/Lo-CzAD and Urea/Lp-CzAD systems are up to 478.42 ms, 5 s, 261.66 ms and 4.5 s in turn. Moreover, Lo-CzAD and Lp-CzAD show time-dependent RTP in doping systems due to monomer and aggregate dispersion, as well as clustering-induced phosphorescence. Based on the different luminescent properties, multiple information encryptions were successfully constructed.
Collapse
Affiliation(s)
- Jianmei Guo
- Guilin University of Technology, Guilin 541004, China
| | - Jiaqi Liu
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China
| | - Yupeng Zhao
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China
| | - Yongtao Wang
- Guilin University of Technology, Guilin 541004, China.
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China.
| | | |
Collapse
|
3
|
Duan X, Zhang J, Liu Y, Zhang M, Jiang YN, Ma Y. Crucial Role of Defect States in the Ultralong Phosphorescence of Organic Molecular Crystals. J Phys Chem Lett 2023; 14:230-236. [PMID: 36594617 DOI: 10.1021/acs.jpclett.2c03604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultralong organic phosphorescence (UOP) in pure organic molecular crystals has attracted a lot of interest recently. There is much debate on the emission mechanism of this UOP. Two recent experimental works published in Nat. Photonics 2019, 13, 406-411 and Nat. Mater. 2021, 20, 175-180 attribute UOP in the 2,4,6-trimethoxy-1,3,5-triazine (TMOT) crystals and the carbazole crystals to H-aggregation of the TMOT molecules or the formation of charge-transfer excitons between the carbazole and impurity molecules. Our first-principles many-body Green's function theory calculations show that the lowest triplet states of these two crystals are in fact the localized defect states originating from the twisted TMOT molecules and the impurities, respectively. Energies of the H-aggregation-induced exciton and the charge-transfer exciton are too high to account for UOP. UOP should be mainly due to the little orbital overlap between the localized defect state and the delocalized band edges of the crystal. Strong intermolecular interactions suppress nonradiative decay of the triplet exciton localized on the defect.
Collapse
Affiliation(s)
- Xiujuan Duan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaru Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ya-Nan Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
4
|
Ren C, Wang Z, Wang T, Guo J, Dai Y, Yuan H, Tan Y. Ultralong Organic Phosphorescence Modulation of Aromatic Carbonyls and
Multi‐Component
Systems. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunguang Ren
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering Qingdao University Qingdao 266071 China
| | - Zhengshuo Wang
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering Qingdao University Qingdao 266071 China
| | - Tianjie Wang
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering Qingdao University Qingdao 266071 China
| | - Jiayi Guo
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering Qingdao University Qingdao 266071 China
| | - Yifeng Dai
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering Qingdao University Qingdao 266071 China
| | - Hua Yuan
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering Qingdao University Qingdao 266071 China
| | - Yeqiang Tan
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles & Institute of Marine Biobased Materials & Collage of Materials Science and Engineering Qingdao University Qingdao 266071 China
| |
Collapse
|
5
|
Roy B, Maisuls I, Zhang J, Niemeyer FC, Rizzo F, Wölper C, Daniliuc CG, Tang BZ, Strassert CA, Voskuhl J. Mapping the Regioisomeric Space and Visible Color Range of Purely Organic Dual Emitters with Ultralong Phosphorescence Components: From Violet to Red Towards Pure White Light. Angew Chem Int Ed Engl 2022; 61:e202111805. [PMID: 34693600 PMCID: PMC9299909 DOI: 10.1002/anie.202111805] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Indexed: 11/25/2022]
Abstract
We mapped the entire visible range of the electromagnetic spectrum and achieved white light emission (CIE: 0.31, 0.34) by combining the intrinsic ns-fluorescence with ultralong ms-phosphorescence from purely organic dual emitters. We realized small molecular materials showing high photoluminescence quantum yields (ΦL ) in the solid state at room temperature, achieved by active exploration of the regioisomeric substitution space. Chromophore stacking-supported stabilization of triplet excitons with assistance from enhanced intersystem crossing channels in the crystalline state played the primary role for the ultra-long phosphorescence. This strategy covers the entire visible spectrum, based on organic phosphorescent emitters with versatile regioisomeric substitution patterns, and provides a single molecular source of white light with long lifetime (up to 163.5 ms) for the phosphorescent component, and high overall photoluminescence quantum yields (up to ΦL =20 %).
Collapse
Affiliation(s)
- Bibhisan Roy
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieCeNTech, CiMIC, SoNWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Jianyu Zhang
- Department of ChemistryHong Kong University of Science and Technology (HKUST)Clear water BayKowloonHong Kong
| | - Felix C. Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Fabio Rizzo
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster (F.R. and C.G.D.) and SoN (F.R.)Corrensstraße 3648149MünsterGermany
- Institute of Chemical Science and Technologies “G. Natta” (SCITEC)National Research Council (CNR)Via G. Fantoli 16/1520138MilanItaly
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745117EssenGermany
| | - Constantin G. Daniliuc
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster (F.R. and C.G.D.) and SoN (F.R.)Corrensstraße 3648149MünsterGermany
| | - Ben Zhong Tang
- Department of ChemistryHong Kong University of Science and Technology (HKUST)Clear water BayKowloonHong Kong
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieCeNTech, CiMIC, SoNWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| |
Collapse
|
6
|
Roy B, Maisuls I, Zhang J, Niemeyer FC, Rizzo F, Wölper C, Daniliuc CG, Tang BZ, Strassert CA, Voskuhl J. Mapping the Regioisomeric Space and Visible Color Range of Purely Organic Dual Emitters with Ultralong Phosphorescence Components: From Violet to Red Towards Pure White Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bibhisan Roy
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie CeNTech, CiMIC, SoN Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Jianyu Zhang
- Department of Chemistry Hong Kong University of Science and Technology (HKUST) Clear water Bay Kowloon Hong Kong
| | - Felix C. Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Fabio Rizzo
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster (F.R. and C.G.D.) and SoN (F.R.) Corrensstraße 36 48149 Münster Germany
- Institute of Chemical Science and Technologies “G. Natta” (SCITEC) National Research Council (CNR) Via G. Fantoli 16/15 20138 Milan Italy
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE) University of Duisburg-Essen Universitätsstrasse 5–7 45117 Essen Germany
| | - Constantin G. Daniliuc
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster (F.R. and C.G.D.) and SoN (F.R.) Corrensstraße 36 48149 Münster Germany
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong University of Science and Technology (HKUST) Clear water Bay Kowloon Hong Kong
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie CeNTech, CiMIC, SoN Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| |
Collapse
|
7
|
Hamzehpoor E, Ruchlin C, Tao Y, Ramos-Sanchez JE, Titi HM, Cosa G, Perepichka DF. Room Temperature Phosphorescence vs Triplet-Triplet Annihilation in N-Substituted Acridone Solids. J Phys Chem Lett 2021; 12:6431-6438. [PMID: 34236197 DOI: 10.1021/acs.jpclett.1c01552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic room temperature phosphorescent (ORTP) compounds have recently emerged as a promising class of emissive materials with a multitude of potential applications. However, the number of building blocks that give rise to efficient ORTP materials is still limited, and the rules for engineering phosphorescent properties in organic solids are not well understood. Here, we report ORTP in a series of N-substituted acridone derivatives with electron-donating, electron-withdrawing, and sterically bulky substituents. X-ray crystallography shows that the solid-state packing varies progressively between coparallel and antiparallel π-stacking and separated π-dimers, depending on the size of the substituent. The detailed photophysical studies supported by DFT calculations reveal complex dynamics of singlet and triplet excited states, depending on the electronic effects of substituents and solid-state packing. The programmable molecular packing provides a lever to control the triplet-triplet annihilation that is manifested as delayed fluorescence in acridone derivatives with continuous (both parallel and antiparallel) π-stacking.
Collapse
Affiliation(s)
- Ehsan Hamzehpoor
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Cory Ruchlin
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Yuze Tao
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | | | - Hatem M Titi
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
8
|
Photo-controllable room-temperature phosphorescence of organic photochromic polymers based on hexaarylbiimidazole. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9978-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Chen C, Chi Z, Chong KC, Batsanov AS, Yang Z, Mao Z, Yang Z, Liu B. Carbazole isomers induce ultralong organic phosphorescence. NATURE MATERIALS 2021; 20:175-180. [PMID: 32958877 DOI: 10.1038/s41563-020-0797-2] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/10/2020] [Indexed: 05/23/2023]
Abstract
Commercial carbazole has been widely used to synthesize organic functional materials that have led to recent breakthroughs in ultralong organic phosphorescence1, thermally activated delayed fluorescence2,3, organic luminescent radicals4 and organic semiconductor lasers5. However, the impact of low-concentration isomeric impurities present within commercial batches on the properties of the synthesized molecules requires further analysis. Here, we have synthesized highly pure carbazole and observed that its fluorescence is blueshifted by 54 nm with respect to commercial samples and its room-temperature ultralong phosphorescence almost disappears6. We discover that such differences are due to the presence of a carbazole isomeric impurity in commercial carbazole sources, with concentrations <0.5 mol%. Ten representative carbazole derivatives synthesized from the highly pure carbazole failed to show the ultralong phosphorescence reported in the literature1,7-15. However, the phosphorescence was recovered by adding 0.1 mol% isomers, which act as charge traps. Investigating the role of the isomers may therefore provide alternative insights into the mechanisms behind ultralong organic phosphorescence1,6-18.
Collapse
Affiliation(s)
- Chengjian Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Zhenguo Chi
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Kok Chan Chong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | | | - Zhan Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Zhu Mao
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China.
| |
Collapse
|
10
|
Li Z, Liu X, Sun L, Ma X. Phosphorus-containing amorphous pure organic room-temperature phosphorescent materials. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Izumi S, Nyga A, de Silva P, Tohnai N, Minakata S, Data P, Takeda Y. Revealing Topological Influence of Phenylenediamine Unit on Physicochemical Properties of Donor-Acceptor-Donor-Acceptor Thermally Activated Delayed Fluorescent Macrocycles. Chem Asian J 2020; 15:4098-4103. [PMID: 33094560 DOI: 10.1002/asia.202001173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/21/2020] [Indexed: 12/14/2022]
Abstract
A new thermally activated delayed fluorescence (TADF)-displaying macrocyclic compound m-1 comprising of two electron-donors (N,N'-diphenyl-m-phenylenediamine) and two electron-acceptors (dibenzo[a,j]phenazine) has been synthesized. The macrocycle developed herein is regarded as a regioisomer of the previously reported TADF macrocycle p-1, which has two N,N'-diphenyl-p-phenylenediamines as the donors. To understand the influence of the topology of the phenylenediamine donors on physicochemical properties of TADF-active macrocycles, herein the molecular structure in the single crystals, photophysical properties, electrochemical behavior, and TADF properties of m-1 have been investigated compared with those of p-1. The substitution of p-phenylene donor with m-phenylene donor led to distinct positive solvatoluminochromism over the full visible-color range, unique oxidative electropolymerization, and slightly lower contribution of TADF, due to the lower CT character in the excited states.
Collapse
Affiliation(s)
- Saika Izumi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 5650871, Japan
| | - Aleksandra Nyga
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
| | - Piotr de Silva
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kgs., Lyngby, Denmark
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 5650871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 5650871, Japan
| | - Przemyslaw Data
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland.,Centre of Polymer and Carbon Materials, Polish Academy of Science, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 5650871, Japan
| |
Collapse
|
12
|
Zhu G, Zhang G. Benzoate Ester Functionalized Phenylenediamine Derivatives: Synthesis, Crystal Structure and Optical Properties. ChemistrySelect 2020. [DOI: 10.1002/slct.202002243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Guanxing Zhu
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest ProductsCollege of Chemical EngineeringNanjing Forestry University Longpan Road 159 Nanjing 210037 P. R. China
| | - Gang Zhang
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest ProductsCollege of Chemical EngineeringNanjing Forestry University Longpan Road 159 Nanjing 210037 P. R. China
| |
Collapse
|
13
|
Tani Y, Komura M, Ogawa T. Mechanoresponsive turn-on phosphorescence by a desymmetrization approach. Chem Commun (Camb) 2020; 56:6810-6813. [PMID: 32432246 DOI: 10.1039/d0cc01949f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The room-temperature phosphorescence (RTP) of metal-free organic crystals is normally quenched by mechanical stimulation. Herein, we demonstrate the opposite mechanoresponse of turn-on RTP. A desymmetrization of a C2-symmetric 1,2-diketone creates space for molecular motion in the crystal, quenching the RTP from the crystal while maintaining that from the amorphous solid.
Collapse
Affiliation(s)
- Yosuke Tani
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
14
|
Jia W, Wang Q, Shi H, An Z, Huang W. Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Chemistry 2020; 26:4437-4448. [PMID: 31788882 DOI: 10.1002/chem.201904500] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Ultralong organic phosphorescence (UOP) of metal-free organic materials has received considerable attention recently owing to their long-lived emission lifetimes, and the fact that they present an attractive alternative to persistent luminescence in inorganic phosphors. Enormous research effort has been devoted on improving UOP performance in metal-free organic phosphors by promoting the intersystem crossing (ISC) process and suppressing the non-radiative decay of triplet state excitons. This minireview summarizes the recent advances in the rational approaches for manipulating the UOP properties of small molecular crystals, such as phosphorescence lifetime, efficiency, and emission colors. Finally, the present challenges and future development of this field are proposed. This review will provide a guideline to rationally design more advanced metal-free organic phosphorescence materials for potential applications.
Collapse
Affiliation(s)
- Wenyong Jia
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qian Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
15
|
Hamzehpoor E, Perepichka DF. Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angew Chem Int Ed Engl 2019; 59:9977-9981. [PMID: 31725174 DOI: 10.1002/anie.201913393] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ehsan Hamzehpoor
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Dmitrii F. Perepichka
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
16
|
Hamzehpoor E, Perepichka DF. Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ehsan Hamzehpoor
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Dmitrii F. Perepichka
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
17
|
Liang X, Liu T, Yan Z, Zhou Y, Su J, Luo X, Wu Z, Wang Y, Zheng Y, Zuo J. Organic Room‐Temperature Phosphorescence with Strong Circularly Polarized Luminescence Based on Paracyclophanes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao Liang
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Ting‐Ting Liu
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Zhi‐Ping Yan
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Yan Zhou
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Jian Su
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Xu‐Feng Luo
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Zheng‐Guang Wu
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - You‐Xuan Zheng
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| |
Collapse
|
18
|
Liang X, Liu TT, Yan ZP, Zhou Y, Su J, Luo XF, Wu ZG, Wang Y, Zheng YX, Zuo JL. Organic Room-Temperature Phosphorescence with Strong Circularly Polarized Luminescence Based on Paracyclophanes. Angew Chem Int Ed Engl 2019; 58:17220-17225. [PMID: 31559680 DOI: 10.1002/anie.201909076] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/19/2019] [Indexed: 11/11/2022]
Abstract
Pure organic materials with intrinsic room-temperature phosphorescence typically rely on heavy atoms or heteroatoms. Two different strategies towards constructing organic room-temperature phosphorescence (RTP) species based upon the through-space charge transfer (TSCT) unit of [2.2]paracyclophane (PCP) were demonstrated. Materials with bromine atoms, PCP-BrCz and PPCP-BrCz, exhibit RTP lifetime of around 100 ms. Modulating the PCP core with non-halogen-containing electron-withdrawing units, PCP-TNTCz and PCP-PyCNCz, successfully elongate the RTP lifetime to 313.59 and 528.00 ms, respectively, the afterglow of which is visible for several seconds under ambient conditions. The PCP-TNTCz and PCP-PyCNCz enantiomers display excellent circular polarized luminescence with dissymmetry factors as high as -1.2×10-2 in toluene solutions, and decent RTP lifetime of around 300 ms for PCP-TNTCz enantiomers in crystalline state.
Collapse
Affiliation(s)
- Xiao Liang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ting-Ting Liu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhi-Ping Yan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yan Zhou
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xu-Feng Luo
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng-Guang Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
19
|
Villa M, Roy M, Bergamini G, Gingras M, Ceroni P. A turn-on phosphorescent sensor of Pb2+ in water by the formation of a coordination polymer. Dalton Trans 2019; 48:3815-3818. [DOI: 10.1039/c9dt00251k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Persulfurated asterisks functionalized with six carboxylic groups form a strongly green phosphorescent coordination polymer upon addition of Pb2+ ions in aqueous solution. The self-assembly process is selective and reversible, enabling Pb2+ sensing with a detection limit of 6.0 × 10−7 M.
Collapse
Affiliation(s)
- Marco Villa
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
- Aix Marseille Université
| | - Myriam Roy
- Aix Marseille Université
- CNRS
- CINAM
- Marseille
- France
| | - Giacomo Bergamini
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Marc Gingras
- Aix Marseille Université
- CNRS
- CINAM
- Marseille
- France
| | - Paola Ceroni
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| |
Collapse
|
20
|
Chen W, Tian Z, Li Y, Jiang Y, Liu M, Duan P. Long-Persistent Circularly Polarized Phosphorescence from Chiral Organic Ionic Crystals. Chemistry 2018; 24:17444-17448. [DOI: 10.1002/chem.201804342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/14/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Wenjie Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie Beijing 100190 P. R. China
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zimin Tian
- College of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; No. 58, Yanta Road 710054 Xi'an P. R. China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; No. 58, Yanta Road 710054 Xi'an P. R. China
| | - Yuqian Jiang
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie Beijing 100190 P. R. China
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
21
|
Sahu S, Das M, Bharti AK, Krishnamoorthy G. Proton transfer triggered proton transfer: a self-assisted twin excited state intramolecular proton transfer. Phys Chem Chem Phys 2018; 20:27131-27139. [DOI: 10.1039/c8cp03835j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The double excited state intramolecular proton transfer (ESIPT) of 3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazole (bis-HPTA) has been investigated and found to undergo a new type of proton transfer.
Collapse
Affiliation(s)
- Saugata Sahu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Minati Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | | | - G. Krishnamoorthy
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| |
Collapse
|