1
|
Feng J, Liu Y, Li K, Wu Y. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment. Int J Pharm 2025; 672:125332. [PMID: 39929327 DOI: 10.1016/j.ijpharm.2025.125332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disorder characterized by elevated pulmonary vascular resistance and pulmonary artery pressure, resulting from a multitude of etiological factors. If left untreated, PAH progressively leads to right heart failure and is associated with high mortality. The etiology of PAH is multifactorial, encompassing both congenital genetic predispositions and acquired secondary influences. Epigenetics, which refers to the regulation of gene expression through chromosomal alterations that do not involve changes in the DNA sequence, has garnered significant attention in PAH research. This includes mechanisms such as DNA methylation, histone modification, and RNA modification. Aberrant epigenetic modifications have been closely linked to the dysregulated proliferation and apoptosis of pulmonary artery smooth muscle cells and endothelial cells, suggesting that these alterations may serve as pivotal drivers of the pathophysiological changes observed in PAH. This review examines the potential impact of epigenetic alterations on the pathogenesis of PAH, highlighting their promise as therapeutic targets. Furthermore, we explore emerging therapeutic strategies and compounds aimed at modulating these epigenetic markers, and discusses their potential applications in both preclinical models and clinical trials. As our understanding of epigenetics deepens, it holds the potential to unlock novel avenues for the precise, individualized treatment of PAH, offering a new frontier in the fight against this debilitating disease.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yunman Liu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Kai Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Falkenstern L, Georgi V, Bunse S, Badock V, Husemann M, Roehn U, Stellfeld T, Fitzgerald M, Ferrara S, Stöckigt D, Stresemann C, Hartung IV, Fernández-Montalván A. A miniaturized mode-of-action profiling platform enables high throughput characterization of the molecular and cellular dynamics of EZH2 inhibition. Sci Rep 2024; 14:1739. [PMID: 38242973 PMCID: PMC10799085 DOI: 10.1038/s41598-023-50964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024] Open
Abstract
The market approval of Tazemetostat (TAZVERIK) for the treatment of follicular lymphoma and epithelioid sarcoma has established "enhancer of zeste homolog 2" (EZH2) as therapeutic target in oncology. Despite their structural similarities and common mode of inhibition, Tazemetostat and other EZH2 inhibitors display differentiated pharmacological profiles based on their target residence time. Here we established high throughput screening methods based on time-resolved fluorescence energy transfer, scintillation proximity and high content analysis microscopy to quantify the biochemical and cellular binding of a chemically diverse collection of EZH2 inhibitors. These assays allowed to further characterize the interplay between EZH2 allosteric modulation by methylated histone tails (H3K27me3) and inhibitor binding, and to evaluate the impact of EZH2's clinically relevant mutant Y641N on drug target residence times. While all compounds in this study exhibited slower off-rates, those with clinical candidate status display significantly slower target residence times in wild type EZH2 and disease-related mutants. These inhibitors interact in a more entropy-driven fashion and show the most persistent effects in cellular washout and antiproliferative efficacy experiments. Our work provides mechanistic insights for the largest cohort of EZH2 inhibitors reported to date, demonstrating that-among several other binding parameters-target residence time is the best predictor of cellular efficacy.
Collapse
Affiliation(s)
- Lilia Falkenstern
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Rentschler Biopharma SE, Erwin-Rentschler-Straße 21, 88471, Laupheim, Germany
| | - Victoria Georgi
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Stefanie Bunse
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Volker Badock
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | | | - Ulrike Roehn
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Timo Stellfeld
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Mark Fitzgerald
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nested Therapeutics, 1030 Massachusetts Avenue, Suite 410, Cambridge, MA, 02138, USA
| | - Steven Ferrara
- Broad Institute, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
| | - Detlef Stöckigt
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Carlo Stresemann
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Ingo V Hartung
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Amaury Fernández-Montalván
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400, Biberach an der Riß, Germany.
| |
Collapse
|
3
|
Wu X, Li D, Chen Y, Wang L, Xu LY, Li EM, Dong G. Fascin - F-actin interaction studied by molecular dynamics simulation and protein network analysis. J Biomol Struct Dyn 2024; 42:435-444. [PMID: 37029713 DOI: 10.1080/07391102.2023.2199083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Dajia Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liangdong Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
4
|
Abstract
Dynamic regulation of the chromatin state by Polycomb Repressive Complex 2 (PRC2) provides an important mean for epigenetic gene control that can profoundly influence normal development and cell lineage specification. PRC2 and PRC2-induced methylation of histone H3 lysine 27 (H3K27) are critically involved in a wide range of DNA-templated processes, which at least include transcriptional repression and gene imprinting, organization of three-dimensional chromatin structure, DNA replication and DNA damage response and repair. PRC2-based genome regulation often goes wrong in diseases, notably cancer. This chapter discusses about different modes-of-action through which PRC2 and EZH2, a catalytic subunit of PRC2, mediate (epi)genomic and transcriptomic regulation. We will also discuss about how alteration or mutation of the PRC2 core or axillary component promotes oncogenesis, how post-translational modification regulates functionality of EZH2 and PRC2, and how PRC2 and other epigenetic pathways crosstalk. Lastly, we will briefly touch on advances in targeting EZH2 and PRC2 dependence as cancer therapeutics.
Collapse
Affiliation(s)
- Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Wu X, Xu LY, Li EM, Dong G. Application of molecular dynamics simulation in biomedicine. Chem Biol Drug Des 2022; 99:789-800. [PMID: 35293126 DOI: 10.1111/cbdd.14038] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023]
Abstract
Molecular dynamics (MD) simulation has been widely used in the field of biomedicine to study the conformational transition of proteins caused by mutation or ligand binding/unbinding. It provides some perspectives those are difficult to find in traditional biochemical or pathological experiments, for example, detailed effects of mutations on protein structure and protein-protein/ligand interaction at the atomic level. In this review, a broad overview on conformation changes and drug discovery by MD simulation is given. We first discuss the preparation of protein structure for MD simulation, which is a key step that determines the accuracy of the simulation. Then, we summarize the applications of commonly used force fields and MD simulations in scientific research. Finally, enhanced sampling methods and common applications of these methods are introduced. In brief, MD simulation is a powerful tool and it can be used to guide experimental study. The combination of MD simulation and experimental techniques is an a priori means to solve the biomedical problems and give a deep understanding on the relationship between protein structure and function.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Recent progress on small molecules targeting epigenetic complexes. Curr Opin Chem Biol 2022; 67:102130. [DOI: 10.1016/j.cbpa.2022.102130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022]
|
7
|
Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer. Cell Death Dis 2022; 13:155. [PMID: 35169119 PMCID: PMC8847585 DOI: 10.1038/s41419-022-04601-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The methyltransferase Polycomb Repressive Complex 2 (PRC2), composed of EZH2, SUZ12, and EED subunits, is associated with transcriptional repression via tri-methylation of histone H3 on lysine 27 residue (H3K27me3). PRC2 is a valid drug target, as the EZH2 gain-of-function mutations identified in patient samples drive tumorigenesis. PRC2 inhibitors have been discovered and demonstrated anti-cancer efficacy in clinic. However, their pharmacological mechanisms are poorly understood. MAK683 is a potent EED inhibitor in clinical development. Focusing on MAK683-sensitive tumors with SMARCB1 or ARID1A loss, we identified a group of PRC2 target genes with high H3K27me3 signal through epigenomic and transcriptomic analysis. Multiple senescence-associated secretory phenotype (SASP) genes, such as GATA4, MMP2/10, ITGA2 and GBP1, are in this group besides previously identified CDKN2A/p16. Upon PRC2 inhibition, the de-repression of SASP genes is detected in multiple sensitive models and contributes to decreased Ki67+, extracellular matrix (ECM) reorganization, senescence associated inflammation and tumor regression even in CDKN2A/p16 knockout tumor. And the combination of PRC2 inhibitor and CDK4/6 inhibitor leads to better effect. The genes potential regulated by PRC2 in neuroblastoma samples exhibited significant enrichment of ECM and senescence associated inflammation, supporting the clinical relevance of our results. Altogether, our results unravel the pharmacological mechanism of PRC2 inhibitors and propose a combination strategy for MAK683 and other PRC2 drugs. ![]()
Collapse
|
8
|
Liu KL, Zhu K, Zhang H. An overview of the development of EED inhibitors to disable the PRC2 function. RSC Med Chem 2022; 13:39-53. [PMID: 35224495 PMCID: PMC8792826 DOI: 10.1039/d1md00274k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/21/2021] [Indexed: 10/24/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) catalyzes the methylation of histone H3 lysine 27 (H3K27) and the enrichment of its catalytic product H3K27me3 is responsible for the silencing of tumor suppressor genes and the blocking of transcripts related to immunity and cell terminal differentiation. Aberrations of PRC2 components, such as mutation and overexpression, have been observed in various cancers, which makes PRC2 a potential therapeutic target for cancer. Up to now, targeting the enhancer of zeste homolog 2 (EZH2), the catalytic subunit of PRC2, represents the main strategy in the development of PRC2 inhibitors. Although significant progress has been made, new problems also emerge, e.g. the drug resistance caused by secondary mutations. In recent years, more and more efforts have shifted to another new strategy - targeting embryonic ectoderm development (EED) to disrupt its major interactions with other components, which are necessary to the PRC2 function, and some promising results have been obtained. This review summarizes the recent development of EED inhibitors as possible chemotherapy for cancer treatment, which could help accelerate future related research work.
Collapse
Affiliation(s)
- Kai-Lu Liu
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|
9
|
An update on allosteric modulators as a promising strategy targeting histone methyltransferase. Pharmacol Res 2021; 172:105865. [PMID: 34474102 DOI: 10.1016/j.phrs.2021.105865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Histone methylation is a vital post-translational modification process in epigenetic regulation. The perturbation of histone methylation accounts for many diseases, including malignant cancers. Although achieving significant advances over past decades, orthosteric inhibitors targeting histone methyltransferases still suffer from challenges on subtype selectivity and acquired drug-resistant mutations. As an alternative, new compounds targeting the evolutionarily less conserved allosteric sites, exemplified by HKMTs and PRMTs inhibitors, offer a promising strategy to address this quandary. Herein, we highlight the allosteric sites and mechanisms in histone methyltransferases along with representative allosteric modulators, expecting to facilitate the discovery of allosteric modulators in favor of epigenetic therapy.
Collapse
|
10
|
Zoroddu S, Marchesi I, Bagella L. PRC2: an epigenetic multiprotein complex with a key role in the development of rhabdomyosarcoma carcinogenesis. Clin Epigenetics 2021; 13:156. [PMID: 34372908 PMCID: PMC8351429 DOI: 10.1186/s13148-021-01147-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Skeletal muscle formation represents a complex of highly organized and specialized systems that are still not fully understood. Epigenetic systems underline embryonic development, maintenance of stemness, and progression of differentiation. Polycomb group proteins play the role of gene silencing of stemness markers that regulate muscle differentiation. Enhancer of Zeste EZH2 is the catalytic subunit of the complex that is able to trimethylate lysine 27 of histone H3 and induce silencing of the involved genes. In embryonal Rhabdomyosarcoma and several other tumors, EZH2 is often deregulated and, in some cases, is associated with tumor malignancy. This review explores the molecular processes underlying the failure of muscle differentiation with a focus on the PRC2 complex. These considerations could open new studies aimed at the development of new cutting-edge therapeutic strategies in the onset of Rhabdomyosarcoma.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Irene Marchesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
- Kitos Biotech Srls, Tramariglio, Alghero, SS, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Tomassi S, Romanelli A, Zwergel C, Valente S, Mai A. Polycomb Repressive Complex 2 Modulation through the Development of EZH2-EED Interaction Inhibitors and EED Binders. J Med Chem 2021; 64:11774-11797. [PMID: 34351144 PMCID: PMC8404197 DOI: 10.1021/acs.jmedchem.1c00226] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Epigenetics is nowadays
a well-accepted area of research. In the
last years, tremendous progress was made regarding molecules targeting
EZH2, directly or indirectly. Recently tazemetostat hit the market
after FDA-approval for the treatment of lymphoma. However, the impairment
of EZH2 activity by orthosteric intervention has proven to be effective
only in a limited subset of cancers. Considering the multiproteic
nature of the PRC2 complex and the marked dependence of EZH2 functions
on the other core subunits such as EED, in recent years, a new targeting
approach ascended to prominence. The possibility to cripple the function
of the PRC2 complex by interfering with its multimeric integrity fueled
the interest in developing EZH2–EED protein–protein
interaction and EED inhibitors as indirect modulators of PRC2-dependent
methyltransferase activity. In this Perspective, we aim to summarize
the latest findings regarding the development and the biological activity
of these emerging classes of PRC2 modulators from a medicinal chemist’s
viewpoint.
Collapse
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Annalisa Romanelli
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Dockerill M, Gregson C, O' Donovan DH. Targeting PRC2 for the treatment of cancer: an updated patent review (2016 - 2020). Expert Opin Ther Pat 2021; 31:119-135. [PMID: 33103538 DOI: 10.1080/13543776.2021.1841167] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION PRC2 is a histone methyltransferase complex associated with several cancer types. Tazemetostat was recently approved as the first inhibitor targeting the catalytic subunit EZH2 and several other EZH2 inhibitors are now under clinical evaluation. Beyond EZH2, researchers have also explored other approaches including PRC2 activators, dual agents inhibiting both EZH1 and EZH2, allosteric inhibitors binding to EED, and compounds which induce the degradation of PRC2 constituent proteins. AREAS COVERED This review provides an overview of anticancer therapies targeting PRC2 during the period 2016-2020 including clinical trials, patents and the scientific literature. EXPERT OPINION The approval of tazemetostat marks the clinical validation of EZH2 for the treatment of cancer. Despite this success many questions remain; for instance, tazemetostat was briefly placed on clinical hold for safety concerns, while another EZH2 inhibitor (GSK126) demonstrated insufficient efficacy during a Phase I/II trial. It is important to understand these risks as PRC2 therapies progress through clinic evaluation. Alternative approaches to target PRC2 may offer distinct advantages over the inhibition of EZH2, including the potential to overcome EZH2 resistance mutations. However, these emerging modalities may also incur new challenges as they progress toward the clinic. Nonetheless, the diversity of agents under development represents a wealth of therapeutic options for future patients.
Collapse
|