1
|
Adam V, Hadjidemetriou K, Jensen N, Shoeman RL, Woodhouse J, Aquila A, Banneville AS, Barends TRM, Bezchastnov V, Boutet S, Byrdin M, Cammarata M, Carbajo S, Eleni Christou N, Coquelle N, De la Mora E, El Khatib M, Moreno Chicano T, Bruce Doak R, Fieschi F, Foucar L, Glushonkov O, Gorel A, Grünbein ML, Hilpert M, Hunter M, Kloos M, Koglin JE, Lane TJ, Liang M, Mantovanelli A, Nass K, Nass Kovacs G, Owada S, Roome CM, Schirò G, Seaberg M, Stricker M, Thépaut M, Tono K, Ueda K, Uriarte LM, You D, Zala N, Domratcheva T, Jakobs S, Sliwa M, Schlichting I, Colletier JP, Bourgeois D, Weik M. Rational Control of Off-State Heterogeneity in a Photoswitchable Fluorescent Protein Provides Switching Contrast Enhancement. Chemphyschem 2022; 23:e202200192. [PMID: 35959919 DOI: 10.1002/cphc.202200192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/25/2022] [Indexed: 01/07/2023]
Abstract
Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.
Collapse
Affiliation(s)
- Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | | | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany and University Medical Center of Göttingen, Clinic for Neurology, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Joyce Woodhouse
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Andrew Aquila
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Anne-Sophie Banneville
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Victor Bezchastnov
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Martin Byrdin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes, France
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Nina Eleni Christou
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Nicolas Coquelle
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Eugenio De la Mora
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Mariam El Khatib
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Tadeo Moreno Chicano
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Oleksandr Glushonkov
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mark Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Thomas J Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Angela Mantovanelli
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Karol Nass
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Japan.,Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Christopher M Roome
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Miriam Stricker
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Japan.,Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Ninon Zala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Tatiana Domratcheva
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany.,Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany and University Medical Center of Göttingen, Clinic for Neurology, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | | | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| |
Collapse
|