1
|
Lugo-Fuentes LI, Lucas-Rosales VA, Sandoval-Mendoza JA, Shang R, Martínez JP, Jiménez-Halla JOC. Different Reaction Modes Operating in ansa-Half-Sandwich Magnesium Catalysts. Chemistry 2024; 30:e202304130. [PMID: 38350013 DOI: 10.1002/chem.202304130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
Magnesium-based catalysts are becoming popular for hydroelementation reactions specially using p-block reagents. Based on the seminal report from Schäfer's group (ChemCatChem 2022, 14, e202201007), our study demonstrates that the reaction mechanisms exhibit a far greater degree of complexity than originally presumed. Magnesium has a variety of coordination modes (and access to different hybridizations) which allows this electron-deficient centre to modulate its catalytic power depending on the σ-donor properties of the reagent. DFT calculations demonstrate several reaction channels closely operating in these versatile catalysts. In addition, variations in limiting energy barriers resulting from catalyst modifications were examined as a function of the Hammett constant, thereby predicting enhanced efficiency in reaction conversions.
Collapse
Affiliation(s)
- Leonardo I Lugo-Fuentes
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - Victor A Lucas-Rosales
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - J Antonio Sandoval-Mendoza
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warszawa
| | - J Oscar C Jiménez-Halla
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| |
Collapse
|
2
|
Martínez JP, Trzaskowski B. An Anthracene-Thiolate-Ligated Ruthenium Complex: Computational Insights into Z-Stereoselective Cross Metathesis. J Phys Chem A 2023; 127:9465-9472. [PMID: 37916964 PMCID: PMC10658622 DOI: 10.1021/acs.jpca.3c05021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Stereoselective control of the cross metathesis of olefins is a crucial aspect of synthetic procedures. In this study, we utilized density functional theory methods to calculate thermodynamic and kinetic descriptors to explore the stereoselectivity of cross metathesis between allylbenzene and 2-butene-1,4-diyl diacetate. A ruthenium-based complex, characterized primarily by an anthracene-9-thiolate ligand, was designed in silico to completely restrict the E conformation of olefins through a bottom-bound mechanism. Our investigation of the kinetics of all feasible propagation routes demonstrated that Z-stereoisomers of metathesis products can be synthesized with an energy cost of only 13 kcal/mol. As a result, we encourage further research into the synthetic strategies outlined in this work.
Collapse
Affiliation(s)
- Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warszawa, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warszawa, Poland
| |
Collapse
|
3
|
Magne A, Carretier E, Ubiera Ruiz L, Clair T, Le Hir M, Moulin P. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. MEMBRANES 2023; 13:738. [PMID: 37623799 PMCID: PMC10456598 DOI: 10.3390/membranes13080738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Catalyst recovery is a major challenge for reaching the objectives of green chemistry for industry. Indeed, catalysts enable quick and selective syntheses with high reaction yields. This is especially the case for homogeneous platinoid catalysts which are almost indispensable for cross-coupling reactions often used by the pharmaceutical industry. However, they are based on scarce, expensive, and toxic resources. In addition, they are quite sensitive and degrade over time at the end of the reaction. Once degraded, their regeneration is complex and hazardous to implement. Working on their recovery could lead to highly effective catalytic chemistries while limiting the environmental and economic impacts of their one-time uses. This review aims to describe and compare conventional processes for metal removal while discussing their advantages and drawbacks considering the objective of homogeneous catalyst recovery. Most of them lead to difficulty recycling active catalysts due to their ability to only treat metal ions or to chelate catalysts without the possibility to reverse the mechanism. However, membrane processes seem to offer some perspectives with limiting degradations. While membranes are not systematically the best option for recycling homogeneous catalysts, current development might help improve the separation between pharmaceutical active ingredients and catalysts and enable their recycling.
Collapse
Affiliation(s)
- Adrien Magne
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Emilie Carretier
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
| | - Lilivet Ubiera Ruiz
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Thomas Clair
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Morgane Le Hir
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Philippe Moulin
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
| |
Collapse
|
4
|
Brotons-Rufes A, Bahri-Laleh N, Poater A. H-Bonding leading to latent initiators for olefin metathesis polymerization. Faraday Discuss 2023; 244:252-268. [PMID: 37186245 DOI: 10.1039/d2fd00163b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ruthenium-NHC based catalysts, with a chelated iminium ligand trans to the N-heterocyclic carbene (NHC) ligand, that polymerize dicyclopentadiene (DCPD) at different temperatures are monitored using Density Functional Theory calculations to unveil the reaction mechanism, and subsequently how important are the geometrical and electronic features vs. the non-covalent interactions in between. The balance is very fragile and H-bonds are fundamental to explain the different behaviour of latent catalysts. This computational study aims to facilitate future studies of new generations of latent initiators for olefin metathesis polymerization, with the 3D and mainly the 2D Non-Covalent Interaction plots the characterization tool for H-bonds.
Collapse
Affiliation(s)
- Artur Brotons-Rufes
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Naeimeh Bahri-Laleh
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|