1
|
Sitapara R, Lam TT, Gandjeva A, Tuder RM, Zisman LS. Phosphoproteomic analysis of lung tissue from patients with pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211031109. [PMID: 34966541 PMCID: PMC8711668 DOI: 10.1177/20458940211031109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disorder associated with high morbidity and mortality despite currently available treatments. We compared the phosphoproteome of lung tissue from subjects with idiopathic PAH (iPAH) obtained at the time of lung transplant with control lung tissue. The mass spectrometry-based analysis found 60,428 phosphopeptide features from which 6622 proteins were identified. Within the subset of identified proteins there were 1234 phosphopeptides with q < 0.05, many of which are involved in immune regulation, angiogenesis, and cell proliferation. Most notably there was a marked relative increase in phosphorylated (S378) IKZF3 (Aiolos), a zinc finger transcription factor that plays a key role in lymphocyte regulation. In vitro phosphorylation assays indicated that GSK3 alpha and/or GSK3 beta could phosphorylate IKZF3 at S378. Western blot analysis demonstrated increased pIKZF3 in iPAH lungs compared to controls. Immunohistochemistry demonstrated phosphorylated IKZF3 in lymphocytes surrounding severely hypertrophied pulmonary arterioles. In situ hybrization showed gene expression in lymphocyte aggregates in PAH samples. A BCL2 reporter assay showed that IKZF3 increased BCL2 promoter activity and demonstrated the potential role of phosphorylation of IKZF3 in the regulation of BCL mediated transcription. Kinase network analysis demonstrated potentially important regulatory roles of casein kinase 2, cyclin-dependent kinase 1 (CDK1), mitogen-associated protein kinases (MAPKs), and protein kinases (PRKs) in iPAH. Bioinformatic analysis demonstrated enrichment of RhoGTPase signaling and the potential importance of cGMP-dependent protein kinase 1 (PRKG). In conclusion, this unbiased phosphoproteomic analysis demonstrated several novel targets regulated by kinase networks in iPAH, and reinforced the potential role of immune regulation in the pathogenesis of iPAH. The identified up- and down-regulated phosphoproteins have potential to serve as biomarkers for PAH and to provide new insights for therapeutic strategies.
Collapse
Affiliation(s)
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, Yale University, New Haven, CT, USA
- MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Aneta Gandjeva
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lawrence S Zisman
- Rensselaer Center for Translational Research Inc., Troy, NY, USA
- Pulmokine Inc., Troy, NY, USA
| |
Collapse
|
2
|
Global Proteomics Deciphered Novel-Function of Osthole Against Pulmonary Arterial Hypertension. Sci Rep 2018; 8:5556. [PMID: 29615702 PMCID: PMC5882969 DOI: 10.1038/s41598-018-23775-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular-disease with high mortality lacking high-efficiency drug. Our efforts attempted to delineate therapeutic action of osthole produced by Angelica Pubescens Maxim, which has the capacity to treat PAH by exploiting an iTRAQ-based proteomic method. Excitingly, osthole was observed to significantly restore 98 of 315 differential proteins significantly modified by PAH progression. They were primarily annotated into 24 signaling pathways. Four mostly affected proteins (RPL15, Cathepsin S, Histone H3.3 and HMGB1) were experimentially validated which belonged to ribosome pathway, oxidative phosphorylation pathway, systemic lupus erythematosus pathway, complement and coagulation cascades pathway, whose modifications and modulations mostly accounted for therapeutic capacity of this compound against PAH. Altogether, our findings demonstrated that global proteomics is a promising systems-biology approach for deciphering therapeutic actions and associated mechanisms of natural products derived from traditional Chinese medicine. Importantly, osthole is supposed to be a candidate compound for new drug development to treat PAH.
Collapse
|
3
|
Wang Y, Huang X, Leng D, Li J, Wang L, Liang Y, Wang J, Miao R, Jiang T. DNA methylation signatures of pulmonary arterial smooth muscle cells in chronic thromboembolic pulmonary hypertension. Physiol Genomics 2018; 50:313-322. [PMID: 29473816 DOI: 10.1152/physiolgenomics.00069.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a life-threatening disease, which is often underpinned by vascular remodeling. Pulmonary arterial smooth muscle cells (PASMCs) are the main participants in vascular remodeling. However, their biological role in CTEPH is not entirely clear. In the present study, we analyzed the whole epigenome-wide DNA methylation profile of cultured PASMCs from CTEPH and control cell lines with the Illumina Human Methylation 450K BeadChip. A total of 6,829 significantly differentially methylated probes (DMPs) were detected between these two groups. Among these, 4,246 DMPs were hypermethylated, while 2,583 DMPs were hypomethylated. The functional enrichment analysis of 1,743 DMPs in the promoter regions and corresponding genes indicated that DNA hypermethylation and hypomethylation might be involved in the regulation of genes that have multifarious biological roles, including roles in cancer-related diseases, the regulation of the actin cytoskeleton, cell adhesion, and pattern specification processes. The observed methylations were categorized into the most important functions, including those involved in cell proliferation, immunity, and migration. We speculate that these methylations were most likely involved in the possible pathophysiology of CTEPH. Gene interaction analysis pertaining to signal networks confirmed that PIK3CA and PIK3R1 were important mediators in these whole networks. The mRNA levels of PIK3CA, HIC1, and SSH1 were verified by qPCR and corresponded with DNA methylation differences. Understanding epigenetic features associated with CTEPH may provide new insights into the mechanism that underlie this condition.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Xiaoxi Huang
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China.,Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Dong Leng
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Jifeng Li
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Lei Wang
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Yan Liang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Jun Wang
- Department of Physiology, Capital Medical University , Beijing , People's Republic of China
| | - Ran Miao
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Neurosurgical Institute, Capital Medical University , Beijing , People's Republic of China
| |
Collapse
|
4
|
Han Y, Li L, Zhang Y, Yuan H, Ye L, Zhao J, Duan DD. Phenomics of Vascular Disease: The Systematic Approach to the Combination Therapy. Curr Vasc Pharmacol 2016; 13:433-40. [PMID: 25313004 PMCID: PMC4397150 DOI: 10.2174/1570161112666141014144829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 02/15/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022]
Abstract
Vascular diseases are usually caused by multifactorial pathogeneses involving genetic and environmental factors. Our current understanding of vascular disease is, however, based on the focused genotype/phenotype studies driven by the “one-gene/one-phenotype” hypothesis. Drugs with “pure target” at individual molecules involved in the pathophysiological pathways are the mainstream of current clinical treatments and the basis of combination therapy of vascular diseases. Recently, the combination of genomics, proteomics, and metabolomics has unraveled the etiology and pathophysiology of vascular disease in a big-data fashion and also revealed unmatched relationships between the omic variability and the much narrower definition of various clinical phenotypes of vascular disease in individual patients. Here, we introduce the phenomics strategy that will change the conventional focused phenotype/genotype/genome study to a new systematic phenome/genome/proteome approach to the understanding of pathophysiology and combination therapy of vascular disease. A phenome is the sum total of an organism’s phenotypic traits that signify the expression of genome and specific environmental influence. Phenomics is the study of phenome to quantitatively correlate complex traits to variability not only in genome, but also in transcriptome, proteome, metabolome, interactome, and environmental factors by exploring the systems biology that links the genomic and phenomic spaces. The application of phenomics and the phenome-wide associated study (PheWAS) will not only identify a systemically-integrated set of biomarkers for diagnosis and prognosis of vascular disease but also provide novel treatment targets for combination therapy and thus make a revolutionary paradigm shift in the clinical treatment of these devastating diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dayue Darrel Duan
- Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine 303F, 1664 N Virginia Street/MS 318, Reno, Nevada 89557-0318, USA.
| |
Collapse
|
5
|
Colvin KL, Dufva MJ, Delaney RP, Ivy DD, Stenmark KR, Yeager ME. Biomarkers for pediatric pulmonary arterial hypertension - a call to collaborate. Front Pediatr 2014; 2:7. [PMID: 24551834 PMCID: PMC3910125 DOI: 10.3389/fped.2014.00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
Therapeutic approaches in pediatric pulmonary arterial hypertension (PAH) are based primarily on clinician experience, in contrast to the evidence-based approach in adults with pulmonary hypertension. There is a clear and present need for non-invasive and objective biomarkers to guide the accurate diagnosis, treatment, and prognosis of this disease in children. The multifaceted spectrum of disease, clinical presentation, and association with other diseases makes this a formidable challenge. However, as more progress is being made in the understanding and management of adult PAH, the potential to apply this knowledge to children has never been greater. This review explores the state of the art with regard to non-invasive biomarkers in PAH, with an eye toward those adult PAH biomarkers potentially suitable for application in pediatric PAH.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Bioengineering, University of Colorado Denver , Aurora, CO , USA ; Department of Pediatrics-Critical Care, University of Colorado Denver , Aurora, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Aurora, CO , USA ; Linda Crnic Institute for Down Syndrome, University of Colorado Denver , Aurora, CO , USA
| | - Melanie J Dufva
- Department of Bioengineering, University of Colorado Denver , Aurora, CO , USA ; Department of Pediatrics-Critical Care, University of Colorado Denver , Aurora, CO , USA
| | - Ryan P Delaney
- Department of Bioengineering, University of Colorado Denver , Aurora, CO , USA ; Department of Pediatrics-Critical Care, University of Colorado Denver , Aurora, CO , USA
| | | | - Kurt R Stenmark
- Department of Pediatrics-Critical Care, University of Colorado Denver , Aurora, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Aurora, CO , USA
| | - Michael E Yeager
- Department of Bioengineering, University of Colorado Denver , Aurora, CO , USA ; Department of Pediatrics-Critical Care, University of Colorado Denver , Aurora, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Aurora, CO , USA ; Linda Crnic Institute for Down Syndrome, University of Colorado Denver , Aurora, CO , USA
| |
Collapse
|