1
|
Soares AG, Contreras J, Archer CR, Mironova E, Berdeaux R, Stockand JD, Abd El-Aziz TM. Stimulation of the Epithelial Na + Channel in Renal Principal Cells by Gs-Coupled Designer Receptors Exclusively Activated by Designer Drugs. Front Physiol 2021; 12:725782. [PMID: 34512393 PMCID: PMC8425396 DOI: 10.3389/fphys.2021.725782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
The activity of the Epithelial Na+ Channel (ENaC) in renal principal cells (PC) fine-tunes sodium excretion and consequently, affects blood pressure. The Gs-adenylyl cyclase-cAMP signal transduction pathway is believed to play a central role in the normal control of ENaC activity in PCs. The current study quantifies the importance of this signaling pathway to the regulation of ENaC activity in vivo using a knock-in mouse that has conditional expression of Gs-DREADD (designer receptors exclusively activated by designer drugs; GsD) in renal PCs. The GsD mouse also contains a cAMP response element-luciferase reporter transgene for non-invasive bioluminescence monitoring of cAMP signaling. Clozapine N-oxide (CNO) was used to selectively and temporally stimulate GsD. Treatment with CNO significantly increased luciferase bioluminescence in the kidneys of PC-specific GsD but not control mice. CNO also significantly increased the activity of ENaC in principal cells in PC-specific GsD mice compared to untreated knock-in mice and CNO treated littermate controls. The cell permeable cAMP analog, 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate, significantly increased the activity and expression in the plasma membrane of recombinant ENaC expressed in CHO and COS-7 cells, respectively. Treatment of PC-specific GsD mice with CNO rapidly and significantly decreased urinary Na+ excretion compared to untreated PC-specific GsD mice and treated littermate controls. This decrease in Na+ excretion in response to CNO in PC-specific GsD mice was similar in magnitude and timing as that induced by the selective vasopressin receptor 2 agonist, desmopressin, in wild type mice. These findings demonstrate for the first time that targeted activation of Gs signaling exclusively in PCs is sufficient to increase ENaC activity and decrease dependent urinary Na+ excretion in live animals.
Collapse
Affiliation(s)
- Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jorge Contreras
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Zoology Department, Faculty of Science, Minia University, Minya, Egypt
| |
Collapse
|
2
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Yeste J, Martínez-Gimeno L, Illa X, Laborda P, Guimerà A, Sánchez-Marín JP, Villa R, Giménez I. A perfusion chamber for monitoring transepithelial NaCl transport in an in vitro model of the renal tubule. Biotechnol Bioeng 2018; 115:1604-1613. [PMID: 29460274 DOI: 10.1002/bit.26574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 02/03/2023]
Abstract
Transepithelial electrical measurements in the renal tubule have provided a better understanding of how kidney regulates electrolyte and water homeostasis through the reabsorption of molecules and ions (e.g., H2 O and NaCl). While experiments and measurement techniques using native tissue are difficult to prepare and to reproduce, cell cultures conducted largely with the Ussing chamber lack the effect of fluid shear stress which is a key physiological stimulus in the renal tubule. To overcome these limitations, we present a modular perfusion chamber for long-term culture of renal epithelial cells under flow that allows the continuous and simultaneous monitoring of both transepithelial electrical parameters and transepithelial NaCl transport. The latter is obtained from electrical conductivity measurements since Na+ and Cl- are the ions that contribute most to the electrical conductivity of a standard physiological solution. The system was validated with epithelial monolayers of raTAL and NRK-52E cells that were characterized electrophysiologically for 5 days under different flow conditions (i.e., apical perfusion, basal, or both). In addition, apical to basal chemical gradients of NaCl (140/70 and 70/140 mM) were imposed in order to demonstrate the feasibility of this methodology for quantifying and monitoring in real time the transepithelial reabsorption of NaCl, which is a primary function of the renal tubule.
Collapse
Affiliation(s)
- Jose Yeste
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)., 08193,, Bellaterra, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain.,Departamento de Microelectrónica y Sistemas Electrónicos, Universitat Autònoma de Barcelona, Spain
| | | | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)., 08193,, Bellaterra, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Pablo Laborda
- Instituto Aragonés de Ciencias de la Salud, IIS Aragón, Zaragoza, Spain
| | - Anton Guimerà
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)., 08193,, Bellaterra, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | | | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)., 08193,, Bellaterra, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Ignacio Giménez
- Instituto Aragonés de Ciencias de la Salud, IIS Aragón, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Endres BT, Sandoval RM, Rhodes GJ, Campos-Bilderback SB, Kamocka MM, McDermott-Roe C, Staruschenko A, Molitoris BA, Geurts AM, Palygin O. Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am J Physiol Renal Physiol 2017; 313:F163-F173. [PMID: 28404591 DOI: 10.1152/ajprenal.00466.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/30/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Hypertension is one of the most prevalent diseases worldwide and a major risk factor for renal failure and cardiovascular disease. The role of albuminuria, a common feature of hypertension and robust predictor of cardiorenal disorders, remains incompletely understood. The goal of this study was to investigate the mechanisms leading to albuminuria in the kidney of a rat model of hypertension, the Dahl salt-sensitive (SS) rat. To determine the relative contributions of the glomerulus and proximal tubule (PT) to albuminuria, we applied intravital two-photon-based imaging to investigate the complex renal physiological changes that occur during salt-induced hypertension. Following a high-salt diet, SS rats exhibited elevated blood pressure, increased glomerular sieving of albumin (GSCalb = 0.0686), relative permeability to albumin (+Δ16%), and impaired volume hemodynamics (-Δ14%). Serum albumin but not serum globulins or creatinine concentration was decreased (-0.54 g/dl), which was concomitant with increased filtration of albumin (3.7 vs. 0.8 g/day normal diet). Pathologically, hypertensive animals had significant tubular damage, as indicated by increased prevalence of granular casts, expansion and necrosis of PT epithelial cells (+Δ2.20 score/image), progressive augmentation of red blood cell velocity (+Δ269 µm/s) and micro vessel diameter (+Δ4.3 µm), and increased vascular injury (+Δ0.61 leakage/image). Therefore, development of salt-induced hypertension can be triggered by fast and progressive pathogenic remodeling of PT epithelia, which can be associated with changes in albumin handling. Collectively, these results indicate that both the glomerulus and the PT contribute to albuminuria, and dual treatment of glomerular filtration and albumin reabsorption may represent an effective treatment of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Bradley T Endres
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ruben M Sandoval
- Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | - George J Rhodes
- Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Malgorzata M Kamocka
- Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Bruce A Molitoris
- Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; .,Department of Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Pollock DM. Comprehensive Physiology: a tool for advanced education in physiology. ADVANCES IN PHYSIOLOGY EDUCATION 2016; 40:275-277. [PMID: 27445273 DOI: 10.1152/advan.00087.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Affiliation(s)
- David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Palygin O, Levchenko V, Evans LC, Blass G, Cowley AW, Staruschenko A. Use of Enzymatic Biosensors to Quantify Endogenous ATP or H2O2 in the Kidney. J Vis Exp 2015. [PMID: 26485400 DOI: 10.3791/53059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enzymatic microelectrode biosensors have been widely used to measure extracellular signaling in real-time. Most of their use has been limited to brain slices and neuronal cell cultures. Recently, this technology has been applied to the whole organs. Advances in sensor design have made possible the measuring of cell signaling in blood-perfused in vivo kidneys. The present protocols list the steps needed to measure ATP and H2O2 signaling in the rat kidney interstitium. Two separate sensor designs are used for the ex vivo and in vivo protocols. Both types of sensor are coated with a thin enzymatic biolayer on top of a permselectivity layer to give fast responding, sensitive and selective biosensors. The permselectivity layer protects the signal from the interferents in biological tissue, and the enzymatic layer utilizes the sequential catalytic reaction of glycerol kinase and glycerol-3-phosphate oxidase in the presence of ATP to produce H2O2. The set of sensors used for the ex vivo studies further detected analyte by oxidation of H2O2 on a platinum/iridium (Pt-Ir) wire electrode. The sensors for the in vivo studies are instead based on the reduction of H2O2 on a mediator coated gold electrode designed for blood-perfused tissue. Final concentration changes are detected by real-time amperometry followed by calibration to known concentrations of analyte. Additionally, the specificity of the amperometric signal can be confirmed by the addition of enzymes such as catalase and apyrase that break down H2O2 and ATP correspondingly. These sensors also rely heavily on accurate calibrations before and after each experiment. The following two protocols establish the study of real-time detection of ATP and H2O2 in kidney tissues, and can be further modified to extend the described method for use in other biological preparations or whole organs.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin
| | | | | | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin
| | | | | |
Collapse
|
7
|
Palygin O, Staruschenko A. Detection of endogenous substances with enzymatic microelectrode biosensors in the kidney. Am J Physiol Regul Integr Comp Physiol 2013; 305:R89-91. [PMID: 23594609 DOI: 10.1152/ajpregu.00135.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct real-time measurements of purinergic agents and reactive oxygen species concentrations have been of great value in understanding the functional roles of these substances in a number of diseases including chronic kidney disease and hypertension. The interstitial concentrations of these intermediate signaling molecules and dynamics of their release are important autocrine and paracrine factors in the kidney, which play a key role in the regulation of oxidative stress, inflammation, and kidney damage. Analysis of signaling mechanisms, especially in vivo and ex vivo, has been slowed by deficiencies of existing methods for direct measurements of the signaling molecules concentrations in whole organs and acute changes in response to endocrine factors. The multienzymatic microelectrode biosensors technique was originally developed and used for the detection of purines release in the brain and in present could be modified to identify the interplay between different substances that could be measured simultaneously in whole organs, such as the kidney. Adaptation of this method for renal and cardiovascular studies represents a unique powerful approach for real-time monitoring of substance level fluctuations in organs or tissues under normal or pathological conditions.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
8
|
Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Ryan RP, Cowley AW, Staruschenko A. Real-time electrochemical detection of ATP and H₂O₂ release in freshly isolated kidneys. Am J Physiol Renal Physiol 2013; 305:F134-41. [PMID: 23594827 DOI: 10.1152/ajprenal.00129.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Extracellular nucleotides such as adenosine-5'-triphosphate (ATP) and reactive oxygen species are essential local signaling molecules in the kidney. However, measurements of changes in the interstitial concentrations of these substances in response to various stimuli remain hindered due to limitations of existing experimental techniques. The goal of this study was to develop a novel approach suitable for real-time measurements of ATP and H₂O₂ levels in freshly isolated rat kidney. Rats were anesthetized and the kidneys were flushed to clear blood before isolation for consequent perfusion. The perfused kidneys were placed into a bath solution and dual simultaneous amperometric recordings were made with the enzymatic microelectrode biosensors detecting ATP and H₂O₂. It was found that basal levels of H₂O₂ were increased in Dahl salt-sensitive (SS) rats fed a high-salt diet compared with SS and Sprague-Dawley rats fed a low-salt diet and that medulla contained higher levels of H₂O₂ compared with cortex in both strains. In contrast, ATP levels did not change in SS rats when animals were fed a high-salt diet. Importantly, angiotensin II via AT₁ receptor induced rapid release of both ATP and H₂O₂ and this effect was enhanced in SS rats. These results demonstrate that ATP and H₂O₂ are critical in the development of salt-sensitive hypertension and that the current method represents a unique powerful approach for the real-time monitoring of the changes in endogenous substance levels in whole organs.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|