1
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
2
|
Bianchi VE, von Haehling S. The treatment of chronic anemia in heart failure: a global approach. Clin Res Cardiol 2024; 113:1117-1136. [PMID: 37660308 DOI: 10.1007/s00392-023-02275-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Chronic anemia is an independent risk factor for mortality in patients with heart failure (HF). Restoring physiological hemoglobin (Hb) levels is essential to increase oxygen transport capacity to tissues and improve cell metabolism as well as physical and cardiac performance. Nutritional deficits and iron deficiency are the major causes of chronic anemia, but other etiologies include chronic kidney disease, inflammatory processes, and unexplained anemia. Hormonal therapy, including erythropoietin (EPO) and anabolic treatment in chronic anemia HF patients, may contribute to improving Hb levels and clinical outcomes. Although preliminary studies showed a beneficial effect of EPO therapy on cardiac efficiency and in HF, more recent studies have not confirmed this positive impact of EPO, alluding to its side effect profile. Physical exercise significantly increases Hb levels and the response of anemia to treatment. In malnourished patients and chronic inflammatory processes, low levels of anabolic hormones, such as testosterone and insulin-like growth factor-1, contribute to the development of chronic anemia. This paper aims to review the effect of nutrition, EPO, anabolic hormones, standard HF treatments, and exercise as regulatory mechanisms of chronic anemia and their cardiovascular consequences in patients with HF.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42, 47891, Falciano, San Marino.
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| |
Collapse
|
3
|
Kumar S, Arora R, Gupta S, Ahuja N, Bhagyaraj E, Nanduri R, Kalra R, Khare AK, Kumawat S, Kaushal V, Sharma M, Gupta P. Nuclear receptor Rev-erbα role in fine-tuning erythropoietin gene expression. Blood Adv 2024; 8:3705-3717. [PMID: 38748870 PMCID: PMC11296239 DOI: 10.1182/bloodadvances.2023012228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT The regulation of red blood cell (RBC) homeostasis by erythropoietin (EPO) is critical for O2 transport and maintaining the adequate number of RBCs in vertebrates. Therefore, dysregulation in EPO synthesis results in disease conditions such as polycythemia in the case of excessive EPO production and anemia, which occurs when EPO is inadequately produced. EPO plays a crucial role in treating anemic patients; however, its overproduction can increase blood viscosity, potentially leading to fatal heart failure. Consequently, the identification of druggable transcription factors and their associated ligands capable of regulating EPO offers a promising therapeutic approach to address EPO-related disorders. This study unveils a novel regulatory mechanism involving 2 pivotal nuclear receptors (NRs), Rev-ERBA (Rev-erbα, is a truncation of reverse c-erbAa) and RAR-related orphan receptor A (RORα), in the control of EPO gene expression. Rev-erbα acts as a cell-intrinsic negative regulator, playing a vital role in maintaining erythropoiesis at the correct level. It accomplishes this by directly binding to newly identified response elements within the human and mouse EPO gene promoter, thereby repressing EPO production. These findings are further supported by the discovery that a Rev-erbα agonist (SR9011) effectively suppresses hypoxia-induced EPO expression in mice. In contrast, RORα functions as a positive regulator of EPO gene expression, also binding to the same response elements in the promoter to induce EPO production. Finally, the results of this study revealed that the 2 NRs, Rev-erbα and RORα, influence EPO synthesis in a negative and positive manner, respectively, suggesting that the modulating activity of these 2 NRs could provide a method to target disorders linked with EPO dysregulation.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rashmi Arora
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Shalini Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nancy Ahuja
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ella Bhagyaraj
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ravikanth Nanduri
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rashi Kalra
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Asheesh Kumar Khare
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Saumyata Kumawat
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vipashu Kaushal
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Mahathi Sharma
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Ding Y, Zhao F, Hu J, Zhao Z, Shi B, Li S. A conjoint analysis of renal structure and omics characteristics reveal new insight to yak high-altitude hypoxia adaptation. Genomics 2024; 116:110857. [PMID: 38729453 DOI: 10.1016/j.ygeno.2024.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Yaks have unique adaptive mechanisms to the hypoxic environment, in which the kidney plays an important role. The aim of this study was to explore the histological changes of yak kidney at different altitudes and the metabolites and genes associated with adaptation to the hypoxic environment. METHODS We analyzed the tissue structure and transcriptomic metabolomic data of yak kidney tissue at two altitudes, 2600 and 4400 m. We compared and identified the morphological adaptations of the kidney and the metabolites and genes associated with hypoxia adaptation in yaks. Changes in renal morphological adaptations, differential metabolites and genes were compared and identified, combining the two in a joint analysis. RESULTS High-altitude yak kidneys showed significant adaptive changes: increased mitochondria, increased glomerular thylakoid area, and decreased localized ribosomes. Transcriptomics and metabolomics identified 69 DAMs (Differential metabolites) and 594 DEGs (differential genes). Functional enrichment analysis showed that the DAMs were associated with protein digestion and absorption, ABC transporter, and MTOR signaling pathway; the DEGs were significantly enriched in Cholesterol metabolism and P53 signaling pathway. The joint analysis indicated that metabolites such as lysine and arginine, as well as key genes such as ABCB5 and COL1A2, were particularly affected under hypoxic conditions, whereas changes in mitochondria in the tissue structure may be related to the expression of MFN1 and OPA1, and changes in glomerular thylakoid membranes are related to VEGFA and TGFB3. CONCLUSION The kidney regulates metabolites and gene expression related to hormone synthesis, protein metabolism, and angiogenesis by adjusting the mitochondrial and glomerular thylakoid membrane structure to support the survival of yaks in high-altitude environments.
Collapse
Affiliation(s)
- Yuan Ding
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Sun Z, Song J, Song Q, Li L, Tian X, Wang L. Recombinant human erythropoietin protects against immature brain damage induced by hypoxic/ischemia insult. Neuroreport 2023; 34:801-810. [PMID: 37938927 PMCID: PMC10609708 DOI: 10.1097/wnr.0000000000001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 11/10/2023]
Abstract
To investigate the neuroprotection of recombinant human erythropoietin (rhEPO) against hypoxic/ischemic (HI) insult in three-day-old rats. Postnatal day 3 (PD3) rats were randomly divided into three groups: Sham group, HI group and HI+rhEPO group. Ligation of the right common carotid artery and hypoxia to induce HI brain injury. After HI insult, the rats received intraperitoneal injection of rhEPO (5000 IU/Kg, qod) in HI+rhEPO group or equal saline in other groups. On PD10, damage of brain tissue was examined by hematoxylin-eosin (HE) staining, observation of neuronal apoptosis in the hippocampus and cortex using immunofluorescence assay (marker: TUNEL). Immunohistochemical staining or western blotting was performed to detect the expression of cyclooxygenase-2 (COX-2), Caspase-3 and phosphorylated Akt (p-Akt) protein. On PD28, cognitive ability of rats was assessed by Morris water maze test. HI injury causes brain pathological morphology and cognitive function damage in PD3 rats, which can be alleviated by rhEPO intervention. Compared with the HI group, the HI+rhEPO group showed an increase in platform discovery rate and cross platform frequency, while the search platform time was shortened (P < 0.05). The proportion of TUNEL positive neurons and the expression of COX-2 and Caspase-3 proteins in brain tissue in the hippocampus and cortex was decreased, while the expression of p-Akt protein was upregulated (P < 0.05). RhEPO could protect against the pathological and cognitive impairment of immature brain induced by HI insult. This neuroprotective activity may involve in inhibiting inflammatory and apoptosis by activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhengda Sun
- Department of Neonatology, Jinan Maternity and Child Health Care Hospital
- Department of Neonatology, Shandong Provincial Hospital affiliated to Shandong First Medical University
- Shandong First Medical University
| | - Jiqing Song
- Department of Radiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | | | - Lin Li
- Department of Neonatology, Shandong Provincial Hospital affiliated to Shandong First Medical University
- Shandong First Medical University
| | | | - Lijun Wang
- Department of Neonatology, Shandong Provincial Hospital affiliated to Shandong First Medical University
| |
Collapse
|
6
|
Casimir M, Colard M, Dussiot M, Roussel C, Martinez A, Peyssonnaux C, Mayeux P, Benghiat S, Manceau S, Francois A, Marin N, Pène F, Buffet PA, Hermine O, Amireault P. Erythropoietin downregulates red blood cell clearance, increasing transfusion efficacy in severely anemic recipients. Am J Hematol 2023; 98:1923-1933. [PMID: 37792521 DOI: 10.1002/ajh.27117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Red blood cells (RBC) transfusion is used to alleviate symptoms and prevent complications in anemic patients by restoring oxygen delivery to tissues. RBC transfusion efficacy, that can be measured by a rise in hemoglobin (Hb) concentration, is influenced by donor-, product-, and recipient-related characteristics. In some studies, severe pre-transfusion anemia is associated with a greater than expected Hb increment following transfusion but the biological mechanism underpinning this relationship remains poorly understood. We conducted a prospective study in critically ill patients and quantified Hb increment following one RBC transfusion. In a murine model, we investigated the possibility that, in conjunction with the host erythropoietic response, the persistence of transfused donor RBC is improved to maintain a highest RBC biomass. We confirmed a correlation between a greater Hb increment and a deeper pre-transfusion anemia in a cohort of 17 patients. In the mouse model, Hb increment and post-transfusion recovery were increased in anemic recipients. Post-transfusion RBC recovery was improved in hypoxic mice or those receiving an erythropoiesis-stimulating agent and decreased in those treated with erythropoietin (EPO)-neutralizing antibodies, suggesting that EPO signaling is necessary to observe this effect. Irradiated recipients also showed decreased post-transfusion RBC recovery. The EPO-induced post-transfusion RBC recovery improvement was abrogated in irradiated or in macrophage-depleted recipients, but maintained in splenectomized recipients, suggesting a mechanism requiring erythroid progenitors and macrophages, but which is not spleen-specific. Our study highlights a physiological role of EPO in downregulating post-transfusion RBC clearance, contributing to maintain a vital RBC biomass to rapidly cope with hypoxemia.
Collapse
Affiliation(s)
- Madeleine Casimir
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Département d'Hématologie, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
- Laboratory of Excellence GR-Ex, Paris, France
| | - Martin Colard
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Département d'Hématologie, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
- Laboratory of Excellence GR-Ex, Paris, France
| | - Michael Dussiot
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Camille Roussel
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité et Université des Antilles, INSERM, BIGR, Paris, France
- Laboratoire d'Hématologie Générale, Hôpital Universitaire Necker Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Anaïs Martinez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Patrick Mayeux
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Samantha Benghiat
- Département d'Hématologie, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Sandra Manceau
- Laboratory of Excellence GR-Ex, Paris, France
- Biotherapy Department, French National Sickle Cell Disease Referral Center, Clinical Investigation Center, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Anne Francois
- Établissement Français du Sang d'Ile de France, Site Hôpital Européen Georges Pompidou, Paris, France
| | - Nathalie Marin
- Service de Médecine Intensive-Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Paris, France
| | - Frédéric Pène
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Service de Médecine Intensive-Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Paris, France
| | - Pierre A Buffet
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité et Université des Antilles, INSERM, BIGR, Paris, France
- Service Des Maladies Infectieuses et Tropicales, Hôpital Universitaire Necker Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Olivier Hermine
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Département d'Hématologie, Hôpital Universitaire Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Pascal Amireault
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité et Université des Antilles, INSERM, BIGR, Paris, France
| |
Collapse
|
7
|
Kragesteen BK, Giladi A, David E, Halevi S, Geirsdóttir L, Lempke OM, Li B, Bapst AM, Xie K, Katzenelenbogen Y, Dahl SL, Sheban F, Gurevich-Shapiro A, Zada M, Phan TS, Avellino R, Wang SY, Barboy O, Shlomi-Loubaton S, Winning S, Markwerth PP, Dekalo S, Keren-Shaul H, Kedmi M, Sikora M, Fandrey J, Korneliussen TS, Prchal JT, Rosenzweig B, Yutkin V, Racimo F, Willerslev E, Gur C, Wenger RH, Amit I. The transcriptional and regulatory identity of erythropoietin producing cells. Nat Med 2023; 29:1191-1200. [PMID: 37106166 DOI: 10.1038/s41591-023-02314-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.
Collapse
Affiliation(s)
- Bjørt K Kragesteen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Amir Giladi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Eyal David
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shahar Halevi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Laufey Geirsdóttir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Olga M Lempke
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Baoguo Li
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas M Bapst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sophie L Dahl
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Fadi Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gurevich-Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Haematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Zada
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Truong San Phan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberto Avellino
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shuang-Yin Wang
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Barboy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Shlomi-Loubaton
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra Winning
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Snir Dekalo
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Urology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hadas Keren-Shaul
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Sikora
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Josef T Prchal
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Barak Rosenzweig
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Urology, Sheba Medical Center, Ramat Gan, Israel
| | - Vladimir Yutkin
- Department of Urology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fernando Racimo
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Chamutal Gur
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research 'Kidney.CH', University of Zurich, Zurich, Switzerland
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Microarray and Bioinformatics Analysis of Differential Gene and lncRNA Expression during Erythropoietin Treatment of Acute Spinal Cord Injury in Rats. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4121910. [PMID: 36092786 PMCID: PMC9462987 DOI: 10.1155/2022/4121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Purpose We performed a genome-wide analysis of long noncoding RNA (lncRNA) expression to identify novel targets for the further study of recombinant human erythropoietin (rhEPO) treatment of acute spinal cord injury (SCI) in rats. Methods Nine rats were randomly divided into 3 groups. No operation was performed in group 1. In groups 2 and 3, a laminectomy was performed at the 10th thoracic vertebra, and a contusion injury was induced by extradural application of an aneurysm clip. Group 1 rats did not receive any treatment, group 2 rats received a single intraperitoneal injection of normal saline, and group 3 rats received rhEPO. Three days after injury, spinal cord tissues were collected for RNA-Seq, microarray, differentially expressed genes (DEGs), Gene Ontology (GO) function enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein interaction (PPI) analyses. Results Compared with group 1, 4,446 genes were found to be differentially expressed in group 2. Furthermore, 99 lncRNAs were found to be changed in the injury group. The data indicate that 2,471 mRNAs were upregulated, and 1,975 mRNAs were downregulated in group 2 as compared with group 1. In addition, 45 of the lncRNAs were upregulated, and the other 44 lncRNAs were downregulated. The top 5 upregulated and top 5 downregulated lncRNAs that were different between group 2 and group 1 are shown. The top 5 downregulated and the top 5 upregulated lncRNAs that were different between group 3 and group 2 are shown. Conclusion RhEPO treatment alters the expression profiles of the differentially expressed lncRNAs and genes beneficial to the development of new treatments.
Collapse
|
9
|
Dahl SL, Bapst AM, Khodo SN, Scholz CC, Wenger RH. Fount, fate, features, and function of renal erythropoietin-producing cells. Pflugers Arch 2022; 474:783-797. [PMID: 35750861 PMCID: PMC9338912 DOI: 10.1007/s00424-022-02714-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022]
Abstract
Renal erythropoietin (Epo)-producing (REP) cells represent a rare and incompletely understood cell type. REP cells are fibroblast-like cells located in close proximity to blood vessels and tubules of the corticomedullary border region. Epo mRNA in REP cells is produced in a pronounced "on-off" mode, showing transient transcriptional bursts upon exposure to hypoxia. In contrast to "ordinary" fibroblasts, REP cells do not proliferate ex vivo, cease to produce Epo, and lose their identity following immortalization and prolonged in vitro culture, consistent with the loss of Epo production following REP cell proliferation during tissue remodelling in chronic kidney disease. Because Epo protein is usually not detectable in kidney tissue, and Epo mRNA is only transiently induced under hypoxic conditions, transgenic mouse models have been developed to permanently label REP cell precursors, active Epo producers, and inactive descendants. Future single-cell analyses of the renal stromal compartment will identify novel characteristic markers of tagged REP cells, which will provide novel insights into the regulation of Epo expression in this unique cell type.
Collapse
Affiliation(s)
- Sophie L Dahl
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Andreas M Bapst
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Stellor Nlandu Khodo
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Roland H Wenger
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
10
|
Sphk1 and Sphk2 Differentially Regulate Erythropoietin Synthesis in Mouse Renal Interstitial Fibroblast-like Cells. Int J Mol Sci 2022; 23:ijms23115882. [PMID: 35682566 PMCID: PMC9180811 DOI: 10.3390/ijms23115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1−/−, or Sphk2−/− mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2−/− renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2−/− cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease.
Collapse
|
11
|
Dahl SL, Pfundstein S, Hunkeler R, Dong X, Knöpfel T, Spielmann P, Scholz CC, Nolan KA, Wenger RH. Fate-mapping of erythropoietin-producing cells in mouse models of hypoxaemia and renal tissue remodelling reveals repeated recruitment and persistent functionality. Acta Physiol (Oxf) 2022; 234:e13768. [PMID: 34982511 PMCID: PMC9286872 DOI: 10.1111/apha.13768] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 01/01/2022] [Indexed: 12/17/2022]
Abstract
Aim Fibroblast‐like renal erythropoietin (Epo) producing (REP) cells of the corticomedullary border region “sense” a decrease in blood oxygen content following anaemia or hypoxaemia. Burst‐like transcription of Epo during tissue hypoxia is transient and is lost during fibrotic tissue remodelling, as observed in chronic kidney disease. The reason for this loss of Epo expression is under debate. Therefore, we tested the hypothesis that REP cell migration, loss and/or differentiation may cause Epo inhibition. Methods Using a reporter mouse that allows permanent labelling of active REP cells at any given time point, we analysed the spatiotemporal fate of REP cells following their initial hypoxic recruitment in models of hypoxaemia and renal tissue remodelling. Results In long‐term tracing experiments, tagged REP reporter cells neither died, proliferated, migrated nor transdifferentiated into myofibroblasts. Approximately 60% of tagged cells re‐expressed Epo upon a second hypoxic stimulus. In an unilateral model of tissue remodelling, tagged cells proliferated and ceased to produce Epo before a detectable increase in myofibroblast markers. Treatment with a hypoxia‐inducible factor (HIF) stabilizing agent (FG‐4592/roxadustat) re‐induced Epo expression in the previously active REP cells of the damaged kidney to a similar extent as in the contralateral healthy kidney. Conclusions Rather than cell death or differentiation, these results suggest cell‐intrinsic transient inhibition of Epo transcription: following long‐term dormancy, REP cells can repeatedly be recruited by tissue hypoxia, and during myofibrotic tissue remodelling, dormant REP cells are efficiently rescued by a pharmaceutic HIF stabilizer, demonstrating persistent REP cell functionality even during phases of Epo suppression.
Collapse
Affiliation(s)
- Sophie L. Dahl
- Institute of Physiology University of Zurich Zurich Switzerland
- National Center of Competence in Research “Kidney.CH” Zurich Switzerland
| | - Svende Pfundstein
- Institute of Physiology University of Zurich Zurich Switzerland
- National Center of Competence in Research “Kidney.CH” Zurich Switzerland
| | - Rico Hunkeler
- Institute of Physiology University of Zurich Zurich Switzerland
- National Center of Competence in Research “Kidney.CH” Zurich Switzerland
| | - Xingtong Dong
- Institute of Physiology University of Zurich Zurich Switzerland
| | - Thomas Knöpfel
- Institute of Physiology University of Zurich Zurich Switzerland
| | | | - Carsten C. Scholz
- Institute of Physiology University of Zurich Zurich Switzerland
- National Center of Competence in Research “Kidney.CH” Zurich Switzerland
| | - Karen A. Nolan
- Institute of Physiology University of Zurich Zurich Switzerland
- National Center of Competence in Research “Kidney.CH” Zurich Switzerland
| | - Roland H. Wenger
- Institute of Physiology University of Zurich Zurich Switzerland
- National Center of Competence in Research “Kidney.CH” Zurich Switzerland
| |
Collapse
|
12
|
Jatho A, Zieseniss A, Brechtel-Curth K, Guo J, Böker KO, Salinas G, Wenger RH, Katschinski DM. The HIFα-Stabilizing Drug Roxadustat Increases the Number of Renal Epo-Producing Sca-1 + Cells. Cells 2022; 11:cells11040753. [PMID: 35203399 PMCID: PMC8869801 DOI: 10.3390/cells11040753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Inhibition of the prolyl-4-hydroxylase domain (PHD) enzymes, leading to the stabilization of hypoxia-inducible factor (HIF) α as well as to the stimulation of erythropoietin (Epo) synthesis, is the functional mechanism of the new anti-anemia drug roxadustat. Little is known about the effects of roxadustat on the Epo-producing cell pool. To gain further insights into the function of PHD inhibitors, we characterized the abundance of mesenchymal stem cell (MSC)-like cells after roxadustat treatment of mice. The number of Sca-1+ mesenchymal cells following roxadustat treatment increased exclusively in the kidneys. Isolated Sca-1+ cells demonstrated typical features of MSC-like cells, including adherence to tissue culture plates, trilineage differentiation potential, and expression of MSC markers. Kidney-derived Sca-1+ MSC-like cells were cultured for up to 21 days. Within the first few days in culture, cells stabilized HIF-1α and HIF-2α and temporarily increased Epo production upon incubation in hypoxia. In summary, we have identified a Sca-1+ MSC-like cell population that is involved in renal Epo production and might contribute to the strong anti-anemic effect of the PHD inhibitor roxadustat.
Collapse
Affiliation(s)
- Aline Jatho
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
- Correspondence: (A.J.); (D.M.K.)
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Katja Brechtel-Curth
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Jia Guo
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Kai Oliver Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Goettingen, Germany;
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany;
| | - Roland H. Wenger
- National Centre of Competence in Research “Kidney.CH”, 8057 Zurich, Switzerland;
- Institute of Physiology, University of Zürich, 8057 Zurich, Switzerland
| | - Dörthe M. Katschinski
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
- Correspondence: (A.J.); (D.M.K.)
| |
Collapse
|
13
|
Bapst AM, Knöpfel T, Nolan KA, Imeri F, Schuh CD, Hall AM, Guo J, Katschinski DM, Wenger RH. Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietin-producing cells. J Cell Physiol 2022; 237:2420-2433. [PMID: 35014036 PMCID: PMC9303970 DOI: 10.1002/jcp.30677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
Abstract
In adult mammals, the kidney is the main source of circulating erythropoietin (Epo), the master regulator of erythropoiesis. In vivo data in mice demonstrated multiple subtypes of interstitial renal Epo‐producing (REP) cells. To analyze the differentiation plasticity of fibroblastoid REP cells, we used a transgenic REP cell reporter mouse model to generate conditionally immortalized REP‐derived (REPD) cell lines. Under nonpermissive conditions, REPD cells ceased from proliferation and acquired a stem cell‐like state, with strongly enhanced hypoxia‐inducible factor 2 (HIF‐2α), stem cell antigen 1 (SCA‐1), and CD133 expression, but also enhanced alpha‐smooth muscle actin (αSMA) expression, indicating myofibroblastic signaling. These cells maintained the “on‐off” nature of Epo expression observed in REP cells in vivo, whereas other HIF target genes showed a more permanent regulation. Like REP cells in vivo, REPD cells cultured in vitro generated long tunneling nanotubes (TNTs) that aligned with endothelial vascular structures, were densely packed with mitochondria and became more numerous under hypoxic conditions. Although inhibition of mitochondrial oxygen consumption blunted HIF signaling, removal of the TNTs did not affect or even enhance the expression of HIF target genes. Apart from pericytes, REPD cells readily differentiated into neuroglia but not adipogenic, chondrogenic, or osteogenic lineages, consistent with a neuronal origin of at least a subpopulation of REP cells. In summary, these results suggest an unprecedented combination of differentiation features of this unique cell type.
Collapse
Affiliation(s)
- Andreas M Bapst
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Karen A Nolan
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Faik Imeri
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Claus D Schuh
- National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland.,Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Andrew M Hall
- National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland.,Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Jia Guo
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Dörthe M Katschinski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Roland H Wenger
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Recktenwald SM, Kaestner L, Yu. Bogdanova A, Minetti G, Klein M, Mairbäurl H. "So is science …" 1 : No evidence for neocytolysis on descending the mountains (Response to Rice and Gunga). Acta Physiol (Oxf) 2021; 233:e13709. [PMID: 34197698 DOI: 10.1111/apha.13709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lars Kaestner
- Experimental Physics Dynamics of Fluids Group Saarland University Saarbrücken Germany
- Theoretical Medicine and Biosciences Campus University HospitalSaarland University Saarbrücken Germany
| | - Anna Yu. Bogdanova
- Red Blood Cell Research Group Institute of Veterinary Physiology University of Zürich Zürich Switzerland
| | - Giampaolo Minetti
- Department of Biology and Biotechology "L Spallanzani", Laboratories of Biochemistry University of Pavia Pavia Italy
| | - Marie Klein
- Medical Clinic VII Sports Medicine University Hospital Heidelberg Heidelberg Germany
| | - Heimo Mairbäurl
- Translational Pneumology University Hospital Heidelberg Heidelberg Germany
| |
Collapse
|
15
|
Liu S, Wang C, Yang Y, Cai H, Zhang M, Si L, Zhang S, Xu Y, Zhu J, Yu Y. Brain structure and perfusion in relation to serum renal function indexes in healthy young adults. Brain Imaging Behav 2021; 16:1014-1025. [PMID: 34709557 DOI: 10.1007/s11682-021-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
Abstract
Prior neuroimaging studies of the relationship between the kidney and the brain have been limited to clinical populations and have largely relied on a single modality. We sought to examine the kidney-brain associations in healthy subjects using a combined analysis of multi-modal imaging data. Structural, diffusion, and perfusion magnetic resonance imaging (MRI) scans were performed to measure cortical thickness, white matter integrity, and cerebral blood flow in 157 healthy young adults. Peripheral venous blood samples were collected to measure serum renal function indexes. Correlation analyses were performed to investigate the relations between brain MRI measures and renal function indexes. Results showed that higher serum uric acid level was associated with increased cortical thickness in the transverse temporal gyrus. We also found that decreased serum creatinine level was linked to lower white matter integrity in the sagittal stratum, anterior corona radiata, superior corona radiata, and external capsule. Furthermore, we observed that increased serum uric acid level was related to hyperperfusion in the opercular and triangular parts of inferior frontal gyrus and supramarginal gyrus, and hypoperfusion in the calcarine sulcus, cuneus and lingual gyrus. More importantly, mediation analysis revealed that the relationship between serum uric acid and working memory performance was mediated by perfusion in the supramarginal gyrus and lingual gyrus. These findings not only may extend current knowledge regarding the relationship between the kidney and the brain, but also may inform real-world clinical practice by identification of potential brain regions vulnerable to renal dysfunction.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Huanhuan Cai
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
16
|
Hafizi R, Imeri F, Wenger RH, Huwiler A. S1P Stimulates Erythropoietin Production in Mouse Renal Interstitial Fibroblasts by S1P 1 and S1P 3 Receptor Activation and HIF-2α Stabilization. Int J Mol Sci 2021; 22:ijms22179467. [PMID: 34502385 PMCID: PMC8430949 DOI: 10.3390/ijms22179467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin (Epo) is the critical hormone for erythropoiesis. In adults, Epo is mainly produced by a subset of interstitial fibroblasts in the kidney, with minor amounts being produced in the liver and the brain. In this study, we used the immortalized renal interstitial fibroblast cell line FAIK F3-5 to investigate the ability of the bioactive sphingolipid sphingosine 1-phosphate (S1P) to stimulate Epo production and to reveal the mechanism involved. Stimulation of cells with exogenous S1P under normoxic conditions (21% O2) led to a dose-dependent increase in Epo mRNA and protein levels and subsequent release of Epo into the medium. S1P also enhanced the stabilization of HIF-2α, a key transcription factor for Epo expression. S1P-stimulated Epo mRNA and protein expression was abolished by HIF-2α mRNA knockdown or by the HIF-2 inhibitor compound 2. Furthermore, the approved S1P receptor modulator FTY720, and its active form FTY720-phosphate, both exerted a similar effect on Epo expression as S1P. The effect of S1P on Epo was antagonized by the selective S1P1 and S1P3 antagonists NIBR-0213 and TY-52156, but not by the S1P2 antagonist JTE-013. Moreover, inhibitors of the classical MAPK/ERK, the p38-MAPK, and inhibitors of protein kinase (PK) C and D all blocked the effect of S1P on Epo expression. Finally, the S1P and FTY720 effects were recapitulated in the Epo-producing human neuroblastoma cell line Kelly, suggesting that S1P receptor-dependent Epo synthesis is of general relevance and not species-specific. In summary, these data suggest that, in renal interstitial fibroblasts, which are the primary source of plasma Epo, S1P1 and 3 receptor activation upregulates Epo under normoxic conditions. This may have a therapeutic impact on disease situations such as chronic kidney disease, where Epo production is impaired, causing anemia, but it may also have therapeutic value as Epo can mediate additional tissue-protective effects in various organs.
Collapse
Affiliation(s)
- Redona Hafizi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (R.H.); (F.I.)
| | - Faik Imeri
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (R.H.); (F.I.)
| | - Roland H. Wenger
- Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (R.H.); (F.I.)
- Correspondence: ; Tel.: +41-316-323-214
| |
Collapse
|
17
|
Orlando IMC, Lafleur VN, Storti F, Spielmann P, Crowther L, Santambrogio S, Schödel J, Hoogewijs D, Mole DR, Wenger RH. Distal and proximal hypoxia response elements cooperate to regulate organ-specific erythropoietin gene expression. Haematologica 2020; 105:2774-2784. [PMID: 33256376 PMCID: PMC7716368 DOI: 10.3324/haematol.2019.236406] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 11/09/2022] Open
Abstract
While it is well-established that distal hypoxia response elements (HREs) regulate hypoxia-inducible factor (HIF) target genes such as erythropoietin (Epo), an interplay between multiple distal and proximal (promoter) HREs has not been described so far. Hepatic Epo expression is regulated by a HRE located downstream of the EPO gene, but this 3' HRE is dispensable for renal EPO gene expression. We previously identified a 5' HRE and could show that both HREs direct exogenous reporter gene expression. Here, we show that whereas in hepatic cells the 3' but not the 5' HRE is required, in neuronal cells both the 5' and 3' HREs contribute to endogenous Epo induction. Moreover, two novel putative HREs were identified in the EPO promoter. In hepatoma cells HIF interacted mainly with the distal 3' HRE, but in neuronal cells HIF most strongly bound the promoter, to a lesser extent the 3' HRE, and not at all the 5' HRE. Interestingly, mutation of either of the two distal HREs abrogated HIF binding to the 3' and promoter HREs. These results suggest that a canonical functional HRE can recruit multiple, not necessarily HIF, transcription factors to mediate HIF binding to different distant HREs in an organ-specific manner.
Collapse
Affiliation(s)
- Ilaria M. C. Orlando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research “Kidney.CH”, Zurich, Switzerland
| | | | - Federica Storti
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research “Kidney.CH”, Zurich, Switzerland
| | - Patrick Spielmann
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research “Kidney.CH”, Zurich, Switzerland
| | - Lisa Crowther
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research “Kidney.CH”, Zurich, Switzerland
| | - Sara Santambrogio
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research “Kidney.CH”, Zurich, Switzerland
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Universitatsklinikum Erlangen, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - David Hoogewijs
- National Center of Competence in Research “Kidney.CH”, Zurich, Switzerland
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - David R. Mole
- NDM Research Building, University of Oxford, Oxford, UK
| | - Roland H. Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research “Kidney.CH”, Zurich, Switzerland
| |
Collapse
|
18
|
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
19
|
Selected hematological, biochemical, and acid-base variables of Paso Fino horses living at different altitudes. Trop Anim Health Prod 2020; 53:8. [PMID: 33205300 DOI: 10.1007/s11250-020-02449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
This study aimed at describing selected hematological, biochemical, and acid-base variables of adult horses living at sea level and comparing them to those living at 5 different altitudes. One hundred and thirty-eight healthy Paso Fino horses > 2 years old were enrolled. Altitudes included the following: altitude A (0 to 50 m above sea level, masl; n = 23), B (1000 to 1050 masl; n = 25), C (1450 masl; n = 30), D (1950 to 2050 masl; n = 30), and E (2950 to 3100 masl; n = 30). A portable blood gas analyzer was used to determine selected biochemical and acid-base variables. Hematocrit (Htc) was measured by blood centrifugation and total plasma protein as total solids using a refractometer. A one-way ANOVA with Tukey's HSD post hoc test or a Wilcoxon signed-rank test, depending of the normality of the data, was conducted to compare groups. Horses at sea level had lower Htc (25% ± 2) and Hb (8 ± 0.8 mg/dL) concentration than those horses living ≥ 1000 masl (P < 0.05, for all comparisons). No differences in Htc and Hb were identified in horses living between 1000 and 3000 masl (P > 0.05, for all comparisons). The venous PvCO2 was significantly lower in horses living at altitudes ≥ 1000 masl than those living at 0 masl (42 ± 4.8 mmHg) (P = 0.001, for all comparisons). No differences in PvCO2 were identified in horses living between 1000 and 3000 masl. This study showed that the Htc, Hb, and PvCO2 of horses living at sea level were different compared to those in healthy horses living at altitudes ≥ 1000 masl. However, differences in TPP and electrolyte concentrations were not identified.
Collapse
|
20
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
21
|
Now a Nobel gas: oxygen. Pflugers Arch 2019; 471:1343-1358. [PMID: 31754831 DOI: 10.1007/s00424-019-02334-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The recent bestowal of the Nobel Prize 2019 in Physiology or Medicine to Gregg L. Semenza, Sir Peter J. Ratcliffe, and William G. Kaelin Jr. celebrates a series of remarkable discoveries that span from the physiological research question on how oxygen deficiency (hypoxia) induces the red blood cell forming hormone erythropoietin (Epo) to the first clinical application of a novel family of Epo-inducing drugs to treat patients suffering from renal anemia. This review looks back at the most important findings made by the three Nobel laureates, highlights current research trends, and sheds an eye on future perspectives of hypoxia research, including emerging and potential clinical applications.
Collapse
|
22
|
Mairbäurl H. Kinetics of Changes in Hemoglobin After Ascent to and Return from High Altitude. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42978-019-00044-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Sciesielski LK, Kirschner KM. ExActa HIF prolyl hydroxylase inhibitors-The new lifestyle drug? Acta Physiol (Oxf) 2019; 227:e13370. [PMID: 31465609 DOI: 10.1111/apha.13370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lina K. Sciesielski
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthDepartment of Neonatology Berlin Germany
| | - Karin M. Kirschner
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthInstitute of Vegetative Physiology Berlin Germany
| |
Collapse
|
24
|
Montero D, Haider T, Barthelmes J, Goetze JP, Cantatore S, Lundby C, Sudano I, Ruschitzka F, Flammer AJ. Age-dependent impairment of the erythropoietin response to reduced central venous pressure in HFpEF patients. Physiol Rep 2019; 7:e14021. [PMID: 30821129 PMCID: PMC6395308 DOI: 10.14814/phy2.14021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Despite growing research interest in the pathophysiology of heart failure with preserved ejection fraction (HFpEF), it remains unknown whether central hemodynamic alterations inherently present in this condition do affect blood pressure and blood volume (BV) regulation. The present study sought to determine hemodynamic and endocrine responses to prolonged orthostatic stress in HFpEF patients. Central venous pressure (CVP) assessed via the internal jugular vein (IJV) aspect ratio with ultrasonography, arterial pressure and heart rate were determined at supine rest and during 2 hours of moderate (25-30°) head-up tilt (HUT) in 18 stable HFpEF patients (71.2 ± 7.3 years), 14 elderly (EC), and 10 young (YC) healthy controls. Parallel endocrine measurements comprised main BV-regulating hormones: pro-atrial natriuretic peptide, copeptin, aldosterone, and erythropoietin (EPO). At supine rest, the IJV aspect ratio was higher (>30%) in HFpEF patients compared with EC and YC, while mean arterial pressure was elevated in HFpEF patients (98.0 ± 13.1 mm Hg) and EC (95.6 ± 8.3 mm Hg) versus YC (87.3 ± 5.0 mm Hg) (P < 0.05). HUT increased heart rate (+10%) and reduced the IJV aspect ratio (-52%), with similar hemodynamic effects in all groups (P for interaction ≥ 0.322). The analysis of endocrine responses to HUT revealed a group×time interaction for circulating EPO, which was increased in YC (+10%) but remained unaltered in HFpEF patients and EC. The EPO response to a given reduction in CVP is similarly impaired in HFpEF patients and elderly controls, suggesting an age-dependent dissociation of EPO production from hemodynamic regulation in the HFpEF condition.
Collapse
Affiliation(s)
- David Montero
- University Heart CenterUniversity Hospital ZurichZurichSwitzerland
- Libin Cardiovascular Institute of Alberta, Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
| | - Thomas Haider
- Institute of PhysiologyUniversity of ZurichZurichSwitzerland
| | - Jens Barthelmes
- University Heart CenterUniversity Hospital ZurichZurichSwitzerland
| | - Jens P. Goetze
- Department of Clinical BiochemistryRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | | | - Carsten Lundby
- Department of Clinical MedicineRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Isabella Sudano
- University Heart CenterUniversity Hospital ZurichZurichSwitzerland
| | - Frank Ruschitzka
- University Heart CenterUniversity Hospital ZurichZurichSwitzerland
| | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Historically, the identity of O2-sensing renal erythropoietin (Epo)-producing (REP) cells was a matter of debate. This review summarizes how recent breakthroughs in transgenic mouse and in-situ hybridization techniques have facilitated sensitive and specific detection of REP cells and accelerated advancements in the understanding of the regulation of renal Epo production in health and disease. RECENT FINDINGS REP cells are a dynamically regulated unique subpopulation of tubulointerstitial cells with features of fibroblasts, pericytes and neurons. Under normal conditions, REP cells are located in the corticomedullary border region within a steep decrement in O2 availability. During the progression of chronic kidney disease (CKD), REP cells cease Epo production, dedifferentiate and contribute to the progression of renal fibrosis. However, CKD patients with renal anaemia still respond with elevated Epo production following treatment with hypoxia-mimicking agents. SUMMARY We hypothesize that REP cells are neuron-like setpoint providers and controllers, which integrate information about blood O2 concentration and local O2 consumption via tissue pO2, and combine these inputs with intrinsic negative feedback loops and perhaps tubular cross-talk, converging in Epo regulation.
Collapse
|
26
|
Montero D, Lundby C. Regulation of Red Blood Cell Volume with Exercise Training. Compr Physiol 2018; 9:149-164. [DOI: 10.1002/cphy.c180004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Generation of renal Epo-producing cell lines by conditional gene tagging reveals rapid HIF-2 driven Epo kinetics, cell autonomous feedback regulation, and a telocyte phenotype. Kidney Int 2018; 95:375-387. [PMID: 30502050 DOI: 10.1016/j.kint.2018.08.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
Erythropoietin (Epo) is essential for erythropoiesis and is mainly produced by the fetal liver and the adult kidney following hypoxic stimulation. Epo regulation is commonly studied in hepatoma cell lines, but differences in Epo regulation between kidney and liver limit the understanding of Epo dysregulation in polycythaemia and anaemia. To overcome this limitation, we have generated a novel transgenic mouse model expressing Cre recombinase specifically in the active fraction of renal Epo-producing (REP) cells. Crossing with reporter mice confirmed the inducible and highly specific tagging of REP cells, located in the corticomedullary border region where there is a steep drop in oxygen bioavailability. A novel method was developed to selectively grow primary REP cells in culture and to generate immortalized clonal cell lines, called fibroblastoid atypical interstitial kidney (FAIK) cells. FAIK cells show very early hypoxia-inducible factor (HIF)-2α induction, which precedes Epo transcription. Epo induction in FAIK cells reverses rapidly despite ongoing hypoxia, suggesting a cell autonomous feedback mechanism. In contrast, HIF stabilizing drugs resulted in chronic Epo induction in FAIK cells. RNA sequencing of three FAIK cell lines derived from independent kidneys revealed a high degree of overlap and suggests that REP cells represent a unique cell type with properties of pericytes, fibroblasts, and neurons, known as telocytes. These novel cell lines may be helpful to investigate myofibroblast differentiation in chronic kidney disease and to elucidate the molecular mechanisms of HIF stabilizing drugs currently in phase III studies to treat anemia in end-stage kidney disease.
Collapse
|
28
|
Abstract
Background Despite multiple factors correlating with the high prevalence of anaemia in heart failure, the prevailing mechanisms have yet to be established. The purpose of this study is to systematically review the literature and determine whether low circulating haemoglobin is primarily underlain by erythropoietin resistance or defective production in heart failure. Design and methods We conducted a systematic search of MEDLINE since its inception until May 2017 for articles reporting erythropoietin and haemoglobin concentrations in heart failure patients not treated with erythropoietin-stimulating agents. The primary outcome was the mean difference in observed/predicted (O/P) erythropoietin ratio between heart failure patients and normal reference values. Meta-regression analyses assessed the influence of potential moderating factors. Results Forty-one studies were included after systematic review, comprising a total of 3137 stable heart failure patients with mean age and left ventricular ejection fraction ranging from 52 years to 80 years and 21% to 59%. The O/P erythropoietin ratio was below reference values in 24 of 25 studies in anaemic heart failure patients ( n = 1094, range = 0.49–1.05), whereas only one out of 16 studies in non-anaemic heart failure patients presented a low O/P erythropoietin ratio ( n = 2043, range = 0.91–1.97). In studies comparing anaemic versus non-anaemic heart failure patients ( n = 1531), the mean O/P erythropoietin ratio was consistently reduced in anaemic heart failure patients (mean difference = –0.68, 95% confidence interval = −0.78, −0.57; p < 0.001). In meta-regression, the O/P erythropoietin ratio was negatively associated with age, female sex, left ventricular ejection fraction, inflammation and disease severity. Conclusion Anaemia in heart failure is overwhelmingly characterized by impaired erythropoietin production, which is exacerbated with age, female sex, left ventricular ejection fraction, inflammation and disease severity.
Collapse
Affiliation(s)
- David Montero
- Department of Cardiology, University Hospital Zurich, Switzerland
| | - Thomas Haider
- Zurich Centre for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Switzerland
| | | |
Collapse
|
29
|
Burtscher M, Gatterer H, Burtscher J, Mairbäurl H. Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Front Physiol 2018; 9:572. [PMID: 29867589 PMCID: PMC5964295 DOI: 10.3389/fphys.2018.00572] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia.
Collapse
Affiliation(s)
- Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | - Hannes Gatterer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL/TLRC-H), Heidelberg, Germany
| |
Collapse
|
30
|
Mairbäurl H. Neocytolysis: How to Get Rid of the Extra Erythrocytes Formed by Stress Erythropoiesis Upon Descent From High Altitude. Front Physiol 2018; 9:345. [PMID: 29674976 PMCID: PMC5896414 DOI: 10.3389/fphys.2018.00345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/20/2018] [Indexed: 01/18/2023] Open
Abstract
Neocytolysis is the selective destruction of those erythrocytes that had been formed during stress-erythropoiesis in hypoxia in order to increase the oxygen transport capacity of blood. Neocytolysis likely aims at decreasing this excess amount of erythrocytes and hemoglobin (Hb) when it is not required anymore and to decrease blood viscosity. Neocytolysis seems to occur upon descent from high altitude. Similar processes seem to occur in microgravity, and are also discussed to mediate the replacement of erythrocytes containing fetal hemoglobin (HbF) with those having adult hemoglobin (HbA) after birth. This review will focus on hypoxia at high altitude. Hemoglobin concentration and total hemoglobin in blood increase by 20-50% depending on the altitude (i.e., the degree of hypoxia) and the duration of the sojourn. Upon return to normoxia hemoglobin concentration, hematocrit, and reticulocyte counts decrease faster than expected from inhibition of stress-erythropoiesis and normal erythrocyte destruction rates. In parallel, an increase in haptoglobin, bilirubin, and ferritin is observed, which serve as indirect markers of hemolysis and hemoglobin-breakdown. At the same time markers of progressing erythrocyte senescence appear even on reticulocytes. Unexpectedly, reticulocytes from hypoxic mice show decreased levels of the hypoxia-inducible factor HIF-1α and decreased activity of the BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), which results in elevated mitochondrial activity in these cells. Furthermore, hypoxia increases the expression of miR-21, which inhibits the expression of catalase and thus decreases one of the most important mechanisms protecting against oxygen free radicals in erythrocytes. This unleashes a series of events which likely explain neocytolysis, because upon re-oxygenation systemic and mitochondrial oxygen radical formation increases and causes the selective destruction of those erythrocytes having impaired anti-oxidant capacity.
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, Translational Lung Research Center, German Center for Lung Research, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
31
|
Preoperative blood morphology and incidence of acute kidney injury after on-pump coronary artery bypass grafting - a single-center preliminary report. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 15:18-22. [PMID: 29686717 PMCID: PMC5907612 DOI: 10.5114/kitp.2018.74670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/05/2018] [Indexed: 01/24/2023]
Abstract
Introduction Acute kidney injury (AKI) after coronary artery bypass grafting (CABG) performed in cardiopulmonary bypass (CPB) may complicate the postoperative course and has a negative impact on outcome. In some cases, postoperative AKI develops in spite of normal baseline creatinine concentration and estimated glomerular filtration rate (eGFR). Aim To examine whether there is any association between the preoperative blood morphology and incidence of post-operative AKI. Material and methods The study involved 62 consecutive patients with the mean age of 64.0 ±7.4 years who underwent CABG in CPB. Before surgery, blood morphology and biochemistry were analyzed. Patients with eGFR below 60 ml/min/1.73 m2 were excluded. After the operation, parameters of renal function were checked systematically. Acute kidney injury was defined according to the Acute Kidney Injury Network (AKIN) classification. Results Twenty-one (33.9%) patients presented AKI (group AKI), although in the majority of them (n = 16) it was temporary and medical management was enough to cure AKI. Only in 1 (1.6%) case was renal replacement therapy necessary. In group AKI, patients’ preoperative hemoglobin concentration (8.46 ±0.72 mM/l), red blood cell count (4.51 ±0.39 × 1012/l) and hematocrit (0.40 ±0.04) were significantly lower (p < 0.05) than in group C (9.07 ±0.57 mM/l; 4.78 ±0.36 × 1012/l; 0.43 ±0.03, respectively). Interestingly, the baseline parameters of renal function were comparable between groups. Conclusions Hemoglobin concentration and red blood cell counts close to the lower limit of the normal range may enable identification of patients at risk of AKI early after CABG in CPB among individuals with normal preoperative biochemical parameters of renal function.
Collapse
|
32
|
Joré C, Loup B, Garcia P, Paris AC, Popot MA, Audran M, Bonnaire Y, Varlet-Marie E, Bailly-Chouriberry L. Liquid chromatography – high resolution mass spectrometry-based metabolomic approach for the detection of Continuous Erythropoiesis Receptor Activator effects in horse doping control. J Chromatogr A 2017; 1521:90-99. [DOI: 10.1016/j.chroma.2017.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022]
|
33
|
Mortola JP, Wilfong D. Hematocrit of mammals (Artiodactyla, Carnivora, Primates) at 1500m and 2100m altitudes. ZOOLOGY 2017; 125:10-23. [PMID: 28855086 DOI: 10.1016/j.zool.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/26/2022]
Abstract
The rise in hematocrit (Hct) is one of the hallmarks of human acclimatization to high altitude and, in chronic conditions, reflects the hypoxia-induced polycythemia. However, it is not a uniform response among domestic species and it is not found in Andean camelids, species long adapted to high altitudes. Hence, we asked to what extent the polycythemia of humans is common among mammals. Hct data were collected from captive mammals of three orders (Primates, Artiodactyla, Carnivora), 70 specimens of 33 species at ∼1500m altitude (barometric pressure Pb=635mmHg) and 296 specimens of 64 species at ∼2100m (Pb=596mmHg), long-term residents at those altitudes. Sea level values and data in men and women at the corresponding altitudes were from a compilation of literature sources. At either altitude Hct was significantly higher than at sea level both in men and women; the increase (ΔHct) for genders combined averaged 3.4% (±0.7 SEM) at 1500m and 5.4% (±0.3) at 2100m. Differently, among the three mammalian orders studied a significant increase in Hct occurred only in females of Carnivora (at 1500m) and in males of Primates (at 2100m). The average ΔHct of all species combined was 0.8% (±0.7) at 1500m and 1.5% (±0.4) at 2100m, both significantly less than in humans (P<0.001). At 2100m the average ΔHct of nine species long adapted to high altitude was 0.4% (±1), significantly less than in non-adapted species (P<0.001). A polycythemic response like that of men and women at 2100m occurred in less than 10% of the mammals examined. We conclude that, at least for the altitudes studied, a minimal polycythemia is a general feature of both high-altitude adapted and non-adapted species, and the magnitude of the human response is exceptional among mammals.
Collapse
Affiliation(s)
- Jacopo P Mortola
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada.
| | - DeeAnn Wilfong
- Cheyenne Mountain Zoo, 4250 Cheyenne Mountain Zoo Road, Colorado Springs, CO 80906, USA
| |
Collapse
|
34
|
Gorr TA. Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions. Acta Physiol (Oxf) 2017; 219:409-440. [PMID: 27364602 DOI: 10.1111/apha.12747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/28/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
First conceptualized from breath-hold diving mammals, later recognized as the ultimate cell autonomous survival strategy in anoxia-tolerant vertebrates and burrowing or hibernating rodents, hypometabolism is typically recruited by resilient organisms to withstand and recover from otherwise life-threatening hazards. Through the coordinated down-regulation of biosynthetic, proliferative and electrogenic expenditures at times when little ATP can be generated, a metabolism turned 'down to the pilot light' allows the re-balancing of energy demand with supply at a greatly suppressed level in response to noxious exogenous stimuli or seasonal endogenous cues. A unifying hallmark of stress-tolerant organisms, the adaptation effectively prevents lethal depletion of ATP, thus delineating a marked contrast with susceptible species. Along with disengaged macromolecular syntheses, attenuated transmembrane ion shuttling and PO2 -conforming respiration rates, the metabolic slowdown in tolerant species usually culminates in a non-cycling, quiescent phenotype. However, such a reprogramming also occurs in leading human pathophysiologies. Ranging from microbial infections through ischaemia-driven infarcts to solid malignancies, cells involved in these disorders may again invoke hypometabolism to endure conditions non-permissive for growth. At the same time, their reduced activities underlie the frequent development of a general resistance to therapeutic interventions. On the other hand, a controlled induction of hypometabolic and/or hypothermic states by pharmacological means has recently stimulated intense research aimed at improved organ preservation and patient survival in situations requiring acutely administered critical care. The current review article therefore presents an up-to-date survey of concepts and applications of a coordinated and reversibly down-regulated metabolic rate as the ultimate defence in stress responses.
Collapse
Affiliation(s)
- T. A. Gorr
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| |
Collapse
|
35
|
Mortola JP, Wilfong D. Hematocrit and Hemoglobin Levels of Nonhuman Apes at Moderate Altitudes: A Comparison with Humans. High Alt Med Biol 2016; 17:323-335. [PMID: 27959666 DOI: 10.1089/ham.2016.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mortola, Jacopo P. and DeeAnn Wilfong. Hematocrit and hemoglobin levels of nonhuman apes at moderate altitudes: a comparison with humans. High Alt Med Biol. 17:323-335, 2016.-We asked to what extent the hematologic response (increase in hematocrit [Hct] and in blood hemoglobin concentration [Hb]) of humans to altitude hypoxia was shared by our closest relatives, the nonhuman apes. Data were collected from 29 specimens of 7 species of apes at 2073 m altitude (barometric pressure Pb = 598 mm Hg); additional data originated from apes located at a lower altitude (1493 m, Pb = 639 mm Hg). The human altitude profiles of Hct and Hb between sea level and 3000 m were constructed from a compilation of literature sources that (all combined) comprised data sets of 10,000-12,000 subjects for each gender. These human data were binned for 0-250 m altitude (sea level) and for each 500 m of progressively higher altitudes. Values of Hb and Hct of both men and women were significantly higher than at sea level at the 1500 bin (1250-1750 m); hence, the altitude threshold for the human hematological responses must be between 1000 and 1500 m. In the nonhuman apes, no increase in Hct or Hb was apparent at 1500 m; at 2000 m, the increase was significant only for the Hb of females. At either altitude in the group of nonhuman apes, the increase in Hct was much less than in humans, and that of Hb was significantly less at 1500 m. We conclude that lack of, or minimal, hematopoietic response to moderate altitude can occur in mammalian species that are not genetically adapted to high altitudes. Polycythemia is not a common response to altitude hypoxia and, at least at moderate altitudes, the degree of the human response may represent the exception among apes rather than the rule.
Collapse
Affiliation(s)
- Jacopo P Mortola
- 1 Department of Physiology, McGill University , Montreal, Canada
| | | |
Collapse
|
36
|
Song G, Wu QP, Xu T, Liu YL, Xu ZG, Zhang SF, Guo ZY. Quick preparation of nanoluciferase-based tracers for novel bioluminescent receptor-binding assays of protein hormones: Using erythropoietin as a model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:311-6. [PMID: 26506452 DOI: 10.1016/j.jphotobiol.2015.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the so far brightest bioluminescence. In recent studies, we developed NanoLuc as an ultrasensitive probe for novel bioluminescent receptor-binding assays of some protein/peptide hormones. In the present study, we proposed a simple method for quick preparation of the NanoLuc-based protein tracers using erythropoietin (Epo) as a model. Epo is a glycosylated cytokine that promotes erythropoiesis by binding and activating the cell membrane receptor EpoR. For quick preparation of a bioluminescent Epo tracer, an Epo-Luc fusion protein carrying a NanoLuc-6 × His-tag at the C-terminus was secretorily overexpressed in transiently transfected human embryonic kidney (HEK) 293 T cells. The Epo-Luc fusion protein retained high-binding affinities with EpoR either overexpressed in HEK293T cells or endogenously expressed in mouse erythroleukemia cells, representing a novel ultrasensitive bioluminescent tracer for non-radioactive receptor-binding assays. Sufficient Epo-Luc tracer for thousands of assays could be quickly obtained within 2 days through simple transient transfection. Thus, our present work provided a simple method for quick preparation of novel NanoLuc-based bioluminescent tracers for Epo and some other protein hormones to facilitate their ligand-receptor interaction studies.
Collapse
Affiliation(s)
- Ge Song
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing-Ping Wu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ting Xu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shi-Fu Zhang
- Proteomic and Molecular Enzymology Lab, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
37
|
Gassmann M, Muckenthaler MU. Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol (1985) 2015; 119:1432-40. [PMID: 26183475 DOI: 10.1152/japplphysiol.00248.2015] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022] Open
Abstract
Adequate acclimatization time to enable adjustment to hypoxic conditions is one of the most important aspects for mountaineers ascending to high altitude. Accordingly, most reviews emphasize mechanisms that cope with reduced oxygen supply. However, during sojourns to high altitude adjustment to elevated iron demand is equally critical. Thus in this review we focus on the interaction between oxygen and iron homeostasis. We review the role of iron 1) in the oxygen sensing process and erythropoietin (Epo) synthesis, 2) in gene expression control mediated by the hypoxia-inducible factor-2 (HIF-2), and 3) as an oxygen carrier in hemoglobin, myoglobin, and cytochromes. The blood hormone Epo that is abundantly expressed by the kidney under hypoxic conditions stimulates erythropoiesis in the bone marrow, a process requiring high iron levels. To ensure that sufficient iron is provided, Epo-controlled erythroferrone that is expressed in erythroid precursor cells acts in the liver to reduce expression of the iron hormone hepcidin. Consequently, suppression of hepcidin allows for elevated iron release from storage organs and enhanced absorption of dietary iron by enterocytes. As recently observed in sojourners at high altitude, however, iron uptake may be hampered by reduced appetite and gastrointestinal bleeding. Reduced iron availability, as observed in a hypoxic mountaineer, enhances hypoxia-induced pulmonary hypertension and may contribute to other hypoxia-related diseases. Overall, adequate systemic iron availability is an important prerequisite to adjust to high-altitude hypoxia and may have additional implications for disease-related hypoxic conditions.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland, and Universidad Peruana Cayetano Heredia, Lima, Peru; and
| | - Martina U Muckenthaler
- Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Molecular Medicine Partnership Unit, University of Heidelberg, Translational Lung Research Center Heidelberg, and German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
38
|
Abstract
The kidneys are important endocrine organs. They secrete humoral factors, such as calcitriol, erythropoietin, klotho, and renin into the circulation, and therefore, they are essentially involved in the regulation of a variety of processes ranging from bone formation to erythropoiesis. The endocrine functions are established by cells, such as proximal or distal tubular cells, renocortical interstitial cells, or mural cells of afferent arterioles. These endocrine cells are either fixed in number, such as tubular cells, which individually and gradually upregulate or downregulate hormone production, or they belong to a pool of cells, which display a recruitment behavior, such as erythropoietin- and renin-producing cells. In the latter case, regulation of humoral function occurs via (de)recruitment of active endocrine cells. As a consequence renin- and erythropoietin-producing cells in the kidney show a high degree of plasticity by reversibly switching between distinct cell states. In this review, we will focus on the characteristics of renin- and of erythropoietin-producing cells, especially on their origin and localization, their reversible transformations, and the mediators, which are responsible for transformation. Finally, we will discuss a possible interconversion of renin and erythropoietin expression.
Collapse
Affiliation(s)
- Birgül Kurt
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Maxwell P, Melendez-Rodríguez F, Matchett KB, Aragones J, Ben-Califa N, Jaekel H, Hengst L, Lindner H, Bernardini A, Brockmeier U, Fandrey J, Grunert F, Oster HS, Mittelman M, El-Tanani M, Thiersch M, Schneider Gasser EM, Gassmann M, Dangoor D, Cuthbert RJ, Irvine A, Jordan A, Lappin T, Thompson J, Neumann D. Novel antibodies directed against the human erythropoietin receptor: creating a basis for clinical implementation. Br J Haematol 2015; 168:429-442. [PMID: 25283956 DOI: 10.1111/bjh.13133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that it causes disease progression in cancer patients by activation of EPO receptors (EPOR) in tumour tissue have been controversial and have restricted its clinical use. Initial clinical studies were flawed because they used polyclonal antibodies, later shown to lack specificity for EPOR. Moreover, multiple isoforms of EPOR caused by differential splicing have been reported in cancer cell lines at the mRNA level but investigations of these variants and their potential impact on tumour progression, have been hampered by lack of suitable antibodies. The EpoCan consortium seeks to promote improved pathological testing of EPOR, leading to safer clinical use of rHuEPO, by producing well characterized EPOR antibodies. Using novel genetic and traditional peptide immunization protocols, we have produced mouse and rat monoclonal antibodies, and show that several of these specifically recognize EPOR by Western blot, immunoprecipitation, immunofluorescence, flow cytometry and immunohistochemistry in cell lines and clinical material. Widespread availability of these antibodies should enable the research community to gain a better understanding of the role of EPOR in cancer, and eventually to distinguish patients who can be treated safely by rHuEPO from those at increased risk from treatment.
Collapse
Affiliation(s)
- Perry Maxwell
- Northern Ireland Molecular Pathology Laboratory, Belfast Health & Social Care Trust, Queen's University Belfast, Belfast, UK; Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tvermoes BE, Paustenbach DJ, Kerger BD, Finley BL, Unice KM. Review of cobalt toxicokinetics following oral dosing: Implications for health risk assessments and metal-on-metal hip implant patients. Crit Rev Toxicol 2015; 45:367-87. [DOI: 10.3109/10408444.2014.985818] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Samillan V, Haider T, Vogel J, Leuenberger C, Brock M, Schwarzwald C, Gassmann M, Ostergaard L. Combination of erythropoietin and sildenafil can effectively attenuate hypoxia-induced pulmonary hypertension in mice. Pulm Circ 2014; 3:898-907. [PMID: 25006406 DOI: 10.1086/674758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is an incurable disease that often leads to right ventricular hypertrophy and right heart failure. This study investigated single versus combined therapy with sildenafil and erythropoietin on hypoxia-induced pulmonary hypertension in mice. Mice were randomized into 5 groups and exposed to either hypoxia (10% oxygen) or normoxia for a total of 5 weeks. Hypoxic mice were treated with saline solution, erythropoietin (500 IU/kg 3 times weekly), sildenafil (10 mg/kg daily), or a combination of the two drugs for the last 2 weeks of hypoxic exposure. We measured right ventricular pressures using right heart catheterization, and the ventilatory response to hypoxia was recorded via whole-body plethysmography. Histological analyses were performed to elucidate changes in pulmonary morphology and appearance of right heart hypertrophy. Plasma levels of cardiotrophin-1 and atrial natriuretic peptide were quantified. Treatment with either erythropoietin or sildenafil alone lowered the hypoxia-induced increase of pulmonary pressure and reduced pulmonary edema formation, pulmonary vascular remodeling, and right ventricular hypertrophy. Notably, the combination of the two drugs had the most prominent effect. Changes in cardiotrophin-1 and atrial natriuretic protein levels confirmed these observations. The combination treatment with erythropoietin and sildenafil demonstrated an attenuation of the development of hypoxia-induced PH in mice that was superior to that observed for either drug when given alone.
Collapse
Affiliation(s)
- Victor Samillan
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland ; Human Physiology Department, Medical School, Universidad Alas Peruanas, Lima, Peru
| | - Thomas Haider
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Johannes Vogel
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Caroline Leuenberger
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Matthias Brock
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Division of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Colin Schwarzwald
- Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland ; Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Louise Ostergaard
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| |
Collapse
|
42
|
Abstract
During the past century, few proteins have matched erythropoietin (Epo) in capturing the imagination of physiologists, molecular biologists, and, more recently, physicians and patients. Its appeal rests on its commanding role as the premier erythroid cytokine, the elegant mechanism underlying the regulation of its gene, and its remarkable impact as a therapeutic agent, arguably the most successful drug spawned by the revolution in recombinant DNA technology. This concise review will begin with a synopsis of the colorful history of this protein, culminating in its purification and molecular cloning. It then covers in more detail the contemporary understanding of Epo's physiology as well as its structure and interaction with its receptor. A major part of this article focuses on the regulation of the Epo gene and the discovery of HIF, a transcription factor that plays a cardinal role in molecular adaptation to hypoxia. In the concluding section, a synopsis of Epo's role in disorders of red blood cell production will be followed by an assessment of the remarkable impact of Epo therapy in the treatment of anemias, as well as concerns that provide a strong impetus for the development of even safer and more effective treatment.
Collapse
Affiliation(s)
- H Franklin Bunn
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Schuler B, Vogel J, Grenacher B, Jacobs RA, Arras M, Gassmann M. Acute and chronic elevation of erythropoietin in the brain improves exercise performance in mice without inducing erythropoiesis. FASEB J 2012; 26:3884-90. [PMID: 22683849 DOI: 10.1096/fj.11-191197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Application of recombinant human erythropoietin (rhEpo) improves exercise capacity by stimulating red blood cell production that, in turn, enhances oxygen delivery and utilization. Apart from this, when applied at high doses, rhEpo crosses the blood-brain barrier, triggering protective neuronal effects. Here we show a fundamental new role by which the presence of Epo in the brain augments exercise performance without altering red blood cell production. Two different animal models, the transgenic mouse line Tg21, which constitutively overexpresses human Epo exclusively in the brain without affecting erythropoiesis, and wild-type mice treated with a single high dose of rhEpo, demonstrate an unexpected improvement in maximal exercise performance independent of changes in total hemoglobin mass, as well as in whole blood volume and cardiovascular parameters. This novel finding builds a more complete understanding regarding the central effects of endogenously produced and exogenously applied Epo on exercise performance.
Collapse
Affiliation(s)
- Beat Schuler
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|