1
|
Li W, He H, Wang H, Wen W. Dynamics of liver cancer cellular taxa revealed through single-cell RNA sequencing: Advances and challenges. Cancer Lett 2024; 611:217394. [PMID: 39689824 DOI: 10.1016/j.canlet.2024.217394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Liver cancer is a leading cause of death worldwide, representing a substantial public health challenge. The advent of single-cell RNA sequencing has significantly advanced our understanding of cellular dynamics from the onset of liver cancer to therapeutic intervention. This technology has unveiled profound insights into cancer heterogeneity and the tumor microenvironment (TME), enabling the identification of key molecular drivers and phenotypic landscapes of liver cancer at a single-cell resolution. This review highlights recent advancements in mapping functional cell subsets, phenotypic alterations, and the diversity of the TME. These insights are pivotal for advancing targeted therapies and developing prognostic tools. Moreover, this review covers the ongoing challenges and advances from tumor initiation to progression, offering a detailed perspective on advancing personalized treatment.
Collapse
Affiliation(s)
- Wenxin Li
- Third Affiliated Hospital of Naval Medical University (Second Military Medical University), National Center for Liver Cancer, Shanghai, 200438, China; Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Huisi He
- Third Affiliated Hospital of Naval Medical University (Second Military Medical University), National Center for Liver Cancer, Shanghai, 200438, China; Department of Oncology, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Hongyang Wang
- Third Affiliated Hospital of Naval Medical University (Second Military Medical University), National Center for Liver Cancer, Shanghai, 200438, China; The Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| | - Wen Wen
- Third Affiliated Hospital of Naval Medical University (Second Military Medical University), National Center for Liver Cancer, Shanghai, 200438, China; Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200438, China; The Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| |
Collapse
|
2
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
3
|
Liu Y, Huang J, Pandey R, Liu P, Therani B, Qiu Q, Rao S, Geurts AM, Cowley AW, Greene AS, Liang M. Robustness of single-cell RNA-seq for identifying differentially expressed genes. BMC Genomics 2023; 24:371. [PMID: 37394518 PMCID: PMC10316566 DOI: 10.1186/s12864-023-09487-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND A common feature of single-cell RNA-seq (scRNA-seq) data is that the number of cells in a cell cluster may vary widely, ranging from a few dozen to several thousand. It is not clear whether scRNA-seq data from a small number of cells allow robust identification of differentially expressed genes (DEGs) with various characteristics. RESULTS We addressed this question by performing scRNA-seq and poly(A)-dependent bulk RNA-seq in comparable aliquots of human induced pluripotent stem cells-derived, purified vascular endothelial and smooth muscle cells. We found that scRNA-seq data needed to have 2,000 or more cells in a cluster to identify the majority of DEGs that would show modest differences in a bulk RNA-seq analysis. On the other hand, clusters with as few as 50-100 cells may be sufficient for identifying the majority of DEGs that would have extremely small p values or transcript abundance greater than a few hundred transcripts per million in a bulk RNA-seq analysis. CONCLUSION Findings of the current study provide a quantitative reference for designing studies that aim for identifying DEGs for specific cell clusters using scRNA-seq data and for interpreting results of such studies.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, USA
| | - Jing Huang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, USA
| | - Rajan Pandey
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pengyuan Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, USA
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bhavika Therani
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, USA
| | - Qiongzi Qiu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Pediatric Hematology/Oncology/Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allen W Cowley
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Physiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, USA.
| |
Collapse
|
4
|
Chen Q, Shan D, Xie Y, Luo X, Wu Y, Chen Q, Dong R, Hu Y. Single cell RNA sequencing research in maternal fetal interface. Front Cell Dev Biol 2023; 10:1079961. [PMID: 36704195 PMCID: PMC9871254 DOI: 10.3389/fcell.2022.1079961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The maternal-fetal interface is an essential environment for embryonic growth and development, and a successful pregnancy depends on the dynamic balance of the microenvironment at the maternal-fetal interface. Single-cell sequencing, which unlike bulk sequencing that provides averaged data, is a robust method for interpreting the cellular and molecular landscape at single-cell resolution. With the support of single-cell sequencing, the issue of maternal-fetal interface heterogeneity during pregnancy has been more deeply elaborated and understood, which is important for a deeper understanding of physiological and pathological pregnancy. In this paper, we analyze the recent studies of single-cell transcriptomics in the maternal-fetal interface, and provide new directions for understanding and treating various pathological pregnancies.
Collapse
Affiliation(s)
- Qian Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China,*Correspondence: Qian Chen, ; Yayi Hu,
| | - Dan Shan
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yupei Xie
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xingrong Luo
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yuxia Wu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qiuhe Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruihong Dong
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yayi Hu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China,Qingbaijiang Maternal and Child Health Hospital, Chengdu, China,*Correspondence: Qian Chen, ; Yayi Hu,
| |
Collapse
|
5
|
Li Q, Wang M, Zhang S, Jin M, Chen R, Luo Y, Sun X. Single-cell RNA sequencing in atherosclerosis: Mechanism and precision medicine. Front Pharmacol 2022; 13:977490. [PMID: 36267275 PMCID: PMC9576927 DOI: 10.3389/fphar.2022.977490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the pathological basis of various vascular diseases, including those with high mortality, such as myocardial infarction and stroke. However, its pathogenesis is complex and has not been fully elucidated yet. Over the past few years, single-cell RNA sequencing (scRNA-seq) has been developed and widely used in many biological fields to reveal biological mechanisms at the cellular level and solve the problems of cellular heterogeneity that cannot be solved using bulk RNA sequencing. In this review, we briefly summarize the existing scRNA-seq technologies and focus on their application in atherosclerosis research to provide insights into the occurrence, development and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Rongchang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
6
|
Li J, Yu N, Li X, Cui M, Guo Q. The Single-Cell Sequencing: A Dazzling Light Shining on the Dark Corner of Cancer. Front Oncol 2021; 11:759894. [PMID: 34745998 PMCID: PMC8566994 DOI: 10.3389/fonc.2021.759894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Tumorigenesis refers to the process of clonal dysplasia that occurs due to the collapse of normal growth regulation in cells caused by the action of various carcinogenic factors. These “successful” tumor cells pass on the genetic templates to their generations in evolutionary terms, but they also constantly adapt to ever-changing host environments. A unique peculiarity known as intratumor heterogeneity (ITH) is extensively involved in tumor development, metastasis, chemoresistance, and immune escape. An understanding of ITH is urgently required to identify the diversity and complexity of the tumor microenvironment (TME), but achieving this understanding has been a challenge. Single-cell sequencing (SCS) is a powerful tool that can gauge the distribution of genomic sequences in a single cell and the genetic variability among tumor cells, which can improve the understanding of ITH. SCS provides fundamental ideas about existing diversity in specific TMEs, thus improving cancer diagnosis and prognosis prediction, as well as improving the monitoring of therapeutic response. Herein, we will discuss advances in SCS and review SCS application in tumors based on current evidence.
Collapse
Affiliation(s)
- Jing Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Yu
- Department of Pharmacy, Qingdao Eighth People's Hospital, Qingdao, China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengna Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Andrade Barbosa B, van Asten SD, Oh JW, Farina-Sarasqueta A, Verheij J, Dijk F, van Laarhoven HWM, Ylstra B, Garcia Vallejo JJ, van de Wiel MA, Kim Y. Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data. Nat Commun 2021; 12:6106. [PMID: 34671028 PMCID: PMC8528834 DOI: 10.1038/s41467-021-26328-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/27/2021] [Indexed: 01/29/2023] Open
Abstract
Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue's complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data.
Collapse
Affiliation(s)
- Bárbara Andrade Barbosa
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Saskia D van Asten
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, South Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | | | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike Dijk
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Mark A van de Wiel
- Department of Epidemiology and Data Science, Amsterdam Public Health research institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Yongsoo Kim
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Domanskyi S, Hakansson A, Bertus TJ, Paternostro G, Piermarocchi C. Digital Cell Sorter (DCS): a cell type identification, anomaly detection, and Hopfield landscapes toolkit for single-cell transcriptomics. PeerJ 2021; 9:e10670. [PMID: 33520459 PMCID: PMC7811293 DOI: 10.7717/peerj.10670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Analysis of singe cell RNA sequencing (scRNA-seq) typically consists of different steps including quality control, batch correction, clustering, cell identification and characterization, and visualization. The amount of scRNA-seq data is growing extremely fast, and novel algorithmic approaches improving these steps are key to extract more biological information. Here, we introduce: (i) two methods for automatic cell type identification (i.e., without expert curator) based on a voting algorithm and a Hopfield classifier, (ii) a method for cell anomaly quantification based on isolation forest, and (iii) a tool for the visualization of cell phenotypic landscapes based on Hopfield energy-like functions. These new approaches are integrated in a software platform that includes many other state-of-the-art methodologies and provides a self-contained toolkit for scRNA-seq analysis. RESULTS We present a suite of software elements for the analysis of scRNA-seq data. This Python-based open source software, Digital Cell Sorter (DCS), consists in an extensive toolkit of methods for scRNA-seq analysis. We illustrate the capability of the software using data from large datasets of peripheral blood mononuclear cells (PBMC), as well as plasma cells of bone marrow samples from healthy donors and multiple myeloma patients. We test the novel algorithms by evaluating their ability to deconvolve cell mixtures and detect small numbers of anomalous cells in PBMC data. AVAILABILITY The DCS toolkit is available for download and installation through the Python Package Index (PyPI). The software can be deployed using the Python import function following installation. Source code is also available for download on Zenodo: DOI 10.5281/zenodo.2533377. SUPPLEMENTARY INFORMATION Supplemental Materials are available at PeerJ online.
Collapse
Affiliation(s)
- Sergii Domanskyi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Alex Hakansson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas J. Bertus
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | | | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Adams JC, Bell PD, Bodine SC, Brooks HL, Bunnett N, Joe B, Keehan KH, Kleyman TR, Marette A, Morty RE, Ramírez JM, Thomsen MB, Yates BJ, Zucker IH. An American Physiological Society cross-journal Call for Papers on "Deconstructing Organs: Single-Cell Analyses, Decellularized Organs, Organoids, and Organ-on-a-Chip Models". Am J Physiol Lung Cell Mol Physiol 2020; 319:L266-L272. [PMID: 32609556 PMCID: PMC7473938 DOI: 10.1152/ajplung.00311.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Nigel Bunnett
- Department of Molecular Pathobiology, New York University, New York, New York
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | | | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Hôpital Laval, Quebec City, Quebec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, Justus Liebig University Giessen, member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jan-Marino Ramírez
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, Washington.,Center on Human Development and Disability, University of Washington, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington, Seattle, Washington
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|