1
|
Liang C, Lin H, Wang Q, Shi E, Zhou S, Zhang F, Qu F, Zhu G. A redox-active covalent organic framework for the efficient detection and removal of hydrazine. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120983. [PMID: 31430637 DOI: 10.1016/j.jhazmat.2019.120983] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
The removal and detection of soluble hydrazine is of importance due to its harm to soil and subterranean water, but challenging. Herein, we preferentially disposed a porous and redox active covalent-organic framework (DAAQ-TFP COF, denoted as DQ-COF) to simultaneously removal and detect hydrazine. Electroactive sites (anthraquinone units) can be intelligently incorporated into the channel walls/pores of COF. DQ-COF has high crystallinity and good thermal stability, and DQ-COF dropped onto nickel matrix (DQ-COF/Ni composite) still retains high surface area, characterized by PXRD, FT-IR, nitrogen adsorption and TGA. Subsequently, a detailed study of DQ-COF towards hydrazine uptake and detection potentials is explored. DQ-COF as adsorbent unfolds strong removal ability towards hydrazine, the maximum removal capacity of which is up to 1108 mg g-1, following Friedrich and pseudo-second-order kinetic models. Meanwhile, the DQ-COF supported on nickel renders attractive electrochemical properties, which is efficiently responsive to hydrazine at a part per billion (ppb) level, coupled with a wide linear range (0.5 ˜ 1223 μM), low detection limit (0.07 μM) and high anti-interference ability. There is no other COFs with such a favorable capability in synchronous removal and selective detection towards hydrazine, probably applying in superintending water quality and disposing wastewater.
Collapse
Affiliation(s)
- Cuiyuan Liang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Qian Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Erbin Shi
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Shenghai Zhou
- Department of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Chengde 067000, PR China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
2
|
Kohila rani K, Devasenathipathy R, Wang SF, Subramanian KS. Highly Sensitive Hydrazine Sensor Based on Co(OH)2Nanoflakes Electrochemically Deposited on MWCNTs. ELECTROANAL 2016. [DOI: 10.1002/elan.201600674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karuppasamy Kohila rani
- Department of Materials and Mineral Resources Engineering; National Taipei University of Technology; Taipei Taiwan
| | - Rajkumar Devasenathipathy
- Department of Materials and Mineral Resources Engineering; National Taipei University of Technology; Taipei Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering; National Taipei University of Technology; Taipei Taiwan
| | - K. Sundara Subramanian
- Department of mechanical engineering; Velammal college of engineering and technology; Madurai India
| |
Collapse
|
3
|
Heydari H, Gholivand MB, Abdolmaleki A. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:16-24. [DOI: 10.1016/j.msec.2016.04.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
|
4
|
Gao X, Ji Y, He S, Li S, Lee JM. Self-assembly synthesis of reduced graphene oxide-supported platinum nanowire composites with enhanced electrocatalytic activity towards the hydrazine oxidation reaction. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01764e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt-NWs-P can self-assemble on the GO@NH2 surface. After NaBH4 reduction, Pt-NWs/RGO show improved electrocatalytic activity for the hydrazine oxidation reaction.
Collapse
Affiliation(s)
- Xueqing Gao
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Yigang Ji
- Department of Life Sciences and Chemistry
- Jiangsu Second Normal University
- Nanjing 210013
- PR China
| | - Shan He
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Shuni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
5
|
Zhang G, He P, Feng W, Ding S, Chen J, Li L, He H, Zhang S, Dong F. Carbon nanohorns/poly(glycine) modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of uric acid, dopamine and ascorbic acid. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.11.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Zhan K, Liu H, Zhang H, Chen Y, Ni H, Wu M, Sun D, Chen Y. A facile method for the immobilization of myoglobin on multi-walled carbon nanotubes: Poly(methacrylic acid-co-acrylamide) nanocomposite and its application for direct bio-detection of H2O2. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Liu H, Cui Y, Li P, Zhou Y, Zhu X, Tang Y, Chen Y, Lu T. Iron(III) diethylenetriaminepentaacetic acid complex on polyallylamine functionalized multiwalled carbon nanotubes: immobilization, direct electrochemistry and electrocatalysis. Analyst 2013; 138:2647-53. [PMID: 23486722 DOI: 10.1039/c3an00113j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A nonenzymatic iron(III) diethylenetriaminepentaacetic acid (Fe(III)-DETPA) complex based amperometric sensor for the analytical determination of hydrogen peroxide was developed. By combining the electrostatic interaction between the Fe(III)-DETPA complex and polyallylamine (PAH) functionalized multiwalled carbon nanotubes (MWCNTs) as well as the ionotropic crosslinking interaction between PAH and ethylenediamine-tetramethylene phosphonic acid (EDTMP), the electroactive Fe(III)-DETPA complex was successfully incorporated within the MWCNT matrix, and firmly immobilized on the Au substrate electrode. The fabricated electrochemical sensor was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical methods. The influences of solution pH and ionic strength on the electrochemical sensor were investigated. The prepared electrochemical sensor had a fast response to hydrogen peroxide (<3 s) and an excellent linear range of concentration from 1.25 × 10(-8) to 4.75 × 10(-3) M with a detection limit of 6.3 × 10(-9) M under the optimum conditions.
Collapse
Affiliation(s)
- Hailing Liu
- Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ji R, Wang L, Yu L, Geng B, Wang G, Zhang X. Effective electrocatalysis based on Ag2O nanowire arrays supported on a copper substrate. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10465-10472. [PMID: 23978111 DOI: 10.1021/am4016523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Silver oxide nanowire arrays (Ag2O NWAs) were first synthesized on a copper (Cu) rod by a simple and facile wet-chemistry approach without using any surfactants. The as-synthesized Ag2O NWA/Cu rod not only can be used as an integrated electrode (called a Ag2O NWA/CRIE) to detect hydrazine (HZ) but also can serve as the catalyst layer for a direct HZ fuel cell. The current density of HZ oxidation on Ag2O NWA (94.4 mA cm(-2)) is much bigger than that on a bare Cu rod (3.9 mA cm(-2)) at -0.6 V, and other Ag2O NWAs have the lowest onset potential (-0.85 V). This suggests that a Ag2O NWA integrated electrode has potential application in catalytic fields that contain the HZ fuel cell.
Collapse
Affiliation(s)
- Rong Ji
- College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Room-temperature synthesis and electrocatalysis of carbon nanotubes supported palladium–iron alloy nanoparticles. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Fu G, Zhao R, Ding L, Tao L, Lin J, Chen Y, Tang Y, Zhou Y, Lu T. Synthesis, Self-Assembly, and Electrocatalysis of Polyallylamine-Functionalized Platinum Nanocubes. Chempluschem 2013; 78:623-627. [DOI: 10.1002/cplu.201300120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/25/2013] [Indexed: 11/10/2022]
|
11
|
Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates. NANOMATERIALS 2013; 3:272-288. [PMID: 28348335 PMCID: PMC5327890 DOI: 10.3390/nano3020272] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/02/2013] [Accepted: 05/05/2013] [Indexed: 11/16/2022]
Abstract
Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs) by electrophoretic deposition (EPD) on semiconductor (silicon) substrates with 3-aminopropyl-triethoxysilane (APTES) surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs) is greatly assisted by the Coulombic force of attraction existing between the positively charged –NH2 surface groups of APTES and the acid treated, negatively charged nanotubes migrating towards the deposition surfaces. The remarkable deposition characteristics of the CNT coatings by EPD in comparison to the dip coating method and the influence of isopropyl (IPA)-based CNT suspension in the fabricated film quality has also been revealed in this study. The effect of varying APTES concentration (5%–100%) on the Raman spectroscopy and thickness of the deposited CNT film has been discussed in details, as well. The deposition approach has eliminated the need of metal deposition in the electrophoretic deposition approach and, therefore, establishes a cost-effective, fast and entirely room temperature-based fabrication strategy of CNT thin films for a wide range of next generation electronic applications.
Collapse
|
12
|
Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Talanta 2013; 115:214-21. [PMID: 24054582 DOI: 10.1016/j.talanta.2013.04.038] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
Abstract
A novel gold nanoparticle-modified graphite pencil electrode (AuNP-GPE) is prepared just by immersing a bare GPE in AuNP solution, followed by heating for 15 min. The bare and modified GPEs are characterized by FE-SEM imaging and cyclic voltammetry. The AuNP-GPEs showed excellent electrocatalytic activities with respect to hydrazine oxidation, with good reproducibility. To reduce the quantification and detection limits, and increase the hydrazine sensitivity, the pH and square wave voltammetry parameters are optimized. A square wave voltammetry study as a function of the hydrazine concentration showed that the AuNP-GPE detector's quantification limit was 100 nmol L(-1) hydrazine, much lower than the value obtained using amperometry (10 µmol L(-1)). The limits of detection (at 3σ) for hydrazine sensing at AuNP-GPEs using square wave voltammetry and amperometry were 42 nmol L(-1) and 3.07 µmol L(-1). Finally, the modified electrode was used to determine the hydrazine concentration in drinking water, and satisfactory results are obtained. This simple, rapid, low-cost method for fabricating a modified electrode is an attractive approach to the development of new sensors.
Collapse
|
13
|
Liu H, Cui Y, Li P, Zhou Y, Chen Y, Tang Y, Lu T. Polyphosphonate induced coacervation of chitosan: Encapsulation of proteins/enzymes and their biosensing. Anal Chim Acta 2013; 776:24-30. [DOI: 10.1016/j.aca.2013.03.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 02/07/2023]
|
14
|
Li P, Ding Y, Wang A, Zhou L, Wei S, Zhou Y, Tang Y, Chen Y, Cai C, Lu T. Self-assembly of tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt(II) on multiwalled carbon nanotubes and their amperometric sensing application for nitrite. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2255-2260. [PMID: 23452401 DOI: 10.1021/am400152k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, the soluble cobalt phthalocyanine functionalized multiwalled carbon nanotubes (MWCNTs) are synthesized by π-π stacking interaction between tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt(II) (CoPcF) complex and MWCNTs. The physical properties of CoPcF-MWCNTs hybrids are evaluated using spectroscopy (UV-vis, XPS, and Raman) and electron microscopy (TEM and SEM). Subsequently, an amperometric nitrite electrochemical sensor is designed by immobilizing CoPcF-MWCNTs hybrids on the glassy carbon electrode. The immobilized CoPcF complex shows the fast electron transfer rate and excellent electrocatalytic activity for the oxidation of nitrite. Under optimum experimental conditions, the proposed nitrite electrochemical sensor shows the fast response (less than 2 s), wide linear range (9.6 × 10(-8) to 3.4 × 10(-4) M) and low detection limit (6.2 × 10(-8) M) because of the good mass transport, fast electron transfer rate, and excellent electrocatalytic activity.
Collapse
Affiliation(s)
- Pan Li
- Jiangsu Key Laboratory of Power Batteries, Laboratory of Electrochemistry, School of Chemistry and Materials Science, Nanjing Normal University, 1# Wenyuan Road, Nanjing 210023, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gong M, Zhang Y, Yao Z, Tang Y, Chen Y, Lu T. Facile synthesis and electrocatalytic application of phosphonate functionalized platinum nanodendrites. CrystEngComm 2013. [DOI: 10.1039/c3ce41548a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|