1
|
Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, Sozzani S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol 2023; 20:432-447. [PMID: 36949244 PMCID: PMC10203372 DOI: 10.1038/s41423-023-00990-6] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
Dendritic cells (DCs) exhibit a specialized antigen-presenting function and play crucial roles in both innate and adaptive immune responses. Due to their ability to cross-present tumor cell-associated antigens to naïve T cells, DCs are instrumental in the generation of specific T-cell-mediated antitumor effector responses in the control of tumor growth and tumor cell dissemination. Within an immunosuppressive tumor microenvironment, DC antitumor functions can, however, be severely impaired. In this review, we focus on the mechanisms of DC capture and activation by tumor cell antigens and the role of the tumor microenvironment in shaping DC functions, taking advantage of recent studies showing the phenotype acquisition, transcriptional state and functional programs revealed by scRNA-seq analysis. The therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is also discussed.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center-IRCCS Rozzano, Milano, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Soriani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mattia Laffranchi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Sozio
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
2
|
Aspas-Caceres J, Rico-Pasto M, Pastor I, Ritort F. Folding Free Energy Determination of an RNA Three-Way Junction Using Fluctuation Theorems. ENTROPY 2022; 24:e24070895. [PMID: 35885118 PMCID: PMC9320289 DOI: 10.3390/e24070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Nonequilibrium work relations and fluctuation theorems permit us to extract equilibrium information from nonequilibrium measurements. They find application in single-molecule pulling experiments where molecular free energies can be determined from irreversible work measurements by using unidirectional (e.g., Jarzynski’s equality) and bidirectional (e.g., Crooks fluctuation theorem and Bennet’s acceptance ratio (BAR)) methods. However, irreversibility and the finite number of pulls limit their applicability: the higher the dissipation, the larger the number of pulls necessary to estimate ΔG within a few kBT. Here, we revisit pulling experiments on an RNA three-way junction (3WJ) that exhibits significant dissipation and work-distribution long tails upon mechanical unfolding. While bidirectional methods are more predictive, unidirectional methods are strongly biased. We also consider a cyclic protocol that combines the forward and reverse work values to increase the statistics of the measurements. For a fixed total experimental time, faster pulling rates permit us to efficiently sample rare events and reduce the bias, compensating for the increased dissipation. This analysis provides a more stringent test of the fluctuation theorem in the large irreversibility regime.
Collapse
Affiliation(s)
- Jaime Aspas-Caceres
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Carrer de Martí i Franquès 1, 08028 Barcelona, Spain; (J.A.-C.); (M.R.-P.); (I.P.)
| | - Marc Rico-Pasto
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Carrer de Martí i Franquès 1, 08028 Barcelona, Spain; (J.A.-C.); (M.R.-P.); (I.P.)
| | - Isabel Pastor
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Carrer de Martí i Franquès 1, 08028 Barcelona, Spain; (J.A.-C.); (M.R.-P.); (I.P.)
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Carrer de Martí i Franquès 1, 08028 Barcelona, Spain; (J.A.-C.); (M.R.-P.); (I.P.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
3
|
Hsu CF, Chang KC, Chen YL, Hsieh PS, Lee AI, Tu JY, Chen YT, Wen JD. Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates. Nucleic Acids Res 2021; 49:6941-6957. [PMID: 34161580 PMCID: PMC8266650 DOI: 10.1093/nar/gkab512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed –1 ribosomal frameshifting is an essential regulation mechanism of translation in viruses and bacteria. It is stimulated by mRNA structures inside the coding region. As the structure is unfolded repeatedly by consecutive translating ribosomes, whether it can refold properly each time is important in performing its function. By using single-molecule approaches and molecular dynamics simulations, we found that a frameshift-stimulating RNA pseudoknot folds sequentially through its upstream stem S1 and downstream stem S2. In this pathway, S2 folds from the downstream side and tends to be trapped in intermediates. By masking the last few nucleotides to mimic their gradual emergence from translating ribosomes, S2 can be directed to fold from the upstream region. The results show that the intermediates are greatly suppressed, suggesting that mRNA refolding may be modulated by ribosomes. Moreover, masking the first few nucleotides of S1 favors the folding from S2 and yields native pseudoknots, which are stable enough to retrieve the masked nucleotides. We hypothesize that translating ribosomes can remodel an intermediate mRNA structure into a stable conformation, which may in turn stimulate backward slippage of the ribosome. This supports an interactive model of ribosomal frameshifting and gives an insightful account addressing previous experimental observations.
Collapse
Affiliation(s)
- Chiung-Fang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Chun Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Lan Chen
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Po-Szu Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - An-I Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Jui-Yun Tu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ting Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Yang L, Toh DFK, Krishna MS, Zhong Z, Liu Y, Wang S, Gong Y, Chen G. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components. Biochemistry 2020; 59:4429-4438. [PMID: 33166472 DOI: 10.1021/acs.biochem.0c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.
Collapse
Affiliation(s)
- Lixia Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhensheng Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
5
|
Tan J, Yang L, Ong AAL, Shi J, Zhong Z, Lye ML, Liu S, Lisowiec-Wachnicka J, Kierzek R, Roca X, Chen G. A Disease-Causing Intronic Point Mutation C19G Alters Tau Exon 10 Splicing via RNA Secondary Structure Rearrangement. Biochemistry 2019; 58:1565-1578. [DOI: 10.1021/acs.biochem.9b00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiazi Tan
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Lixia Yang
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Jiahao Shi
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Zhensheng Zhong
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Mun Leng Lye
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Shiyi Liu
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Jolanta Lisowiec-Wachnicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Gang Chen
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
6
|
Patil KM, Toh DFK, Yuan Z, Meng Z, Shu Z, Zhang H, Ong A, Krishna MS, Lu L, Lu Y, Chen G. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Nucleic Acids Res 2018; 46:7506-7521. [PMID: 30011039 PMCID: PMC6125629 DOI: 10.1093/nar/gky631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
Double-stranded RNA (dsRNA) structures form triplexes and RNA-protein complexes through binding to single-stranded RNA (ssRNA) regions and proteins, respectively, for diverse biological functions. Hence, targeting dsRNAs through major-groove triplex formation is a promising strategy for the development of chemical probes and potential therapeutics. Short (e.g., 6-10 mer) chemically-modified Peptide Nucleic Acids (PNAs) have been developed that bind to dsRNAs sequence specifically at physiological conditions. For example, a PNA incorporating a modified base thio-pseudoisocytosine (L) has an enhanced recognition of a G-C pair in an RNA duplex through major-groove L·G-C base triple formation at physiological pH, with reduced pH dependence as observed for C+·G-C base triple formation. Currently, an unmodified T base is often incorporated into PNAs to recognize a Watson-Crick A-U pair through major-groove T·A-U base triple formation. A substitution of the 5-methyl group in T by hydrogen and halogen atoms (F, Cl, Br, and I) causes a decrease of the pKa of N3 nitrogen atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions. Here, we synthesized a series of PNAs incorporating uracil and halouracils, followed by binding studies by non-denaturing polyacrylamide gel electrophoresis, circular dichroism, and thermal melting. Our results suggest that replacing T with uracil and halouracils may enhance the recognition of an A-U pair by PNA·RNA2 triplex formation in a sequence-dependent manner, underscoring the importance of local stacking interactions. Incorporating bromouracils and chlorouracils into a PNA results in a significantly reduced pH dependence of triplex formation even for PNAs containing C bases, likely due to an upshift of the apparent pKa of N3 atoms of C bases. Thus, halogenation and other chemical modifications may be utilized to enhance hydrogen bonding of the adjacent base triples and thus triplex formation. Furthermore, our experimental and computational modelling data suggest that PNA·RNA2 triplexes may be stabilized by incorporating a BrUL step but not an LBrU step, in dsRNA-binding PNAs.
Collapse
Affiliation(s)
- Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhen Yuan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhenyu Meng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Haiping Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
7
|
Yang L, Zhong Z, Tong C, Jia H, Liu Y, Chen G. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting. J Am Chem Soc 2018; 140:8172-8184. [PMID: 29884019 DOI: 10.1021/jacs.8b02970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A wobble A·C pair can be protonated at near physiological pH to form a more stable wobble A+·C pair. Here, we constructed an RNA hairpin (rHP) and three mutants with one A-U base pair substituted with an A·C mismatch on the top (near the loop, U22C), middle (U25C), and bottom (U29C) positions of the stem, respectively. Our results on single-molecule mechanical (un)folding using optical tweezers reveal the destabilization effect of A-U to A·C pair substitution and protonation-dependent enhancement of mechanical stability facilitated through an increased folding rate, or decreased unfolding rate, or both. Our data show that protonation may occur rapidly upon the formation of an apparent mechanical folding transition state. Furthermore, we measured the bulk -1 ribosomal frameshifting efficiencies of the hairpins by a cell-free translation assay. For the mRNA hairpins studied, -1 frameshifting efficiency correlates with mechanical unfolding force at equilibrium and folding rate at around 15 pN. U29C has a frameshifting efficiency similar to that of rHP (∼2%). Accordingly, the bottom 2-4 base pairs of U29C may not form under a stretching force at pH 7.3, which is consistent with the fact that the bottom base pairs of the hairpins may be disrupted by ribosome at the slippery site. U22C and U25C have a similar frameshifting efficiency (∼1%), indicating that both unfolding and folding rates of an mRNA hairpin in a crowded environment may affect frameshifting. Our data indicate that mechanical (un)folding of RNA hairpins may mimic how mRNAs unfold and fold in the presence of translating ribosomes.
Collapse
Affiliation(s)
- Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371.,School of Physics, and State Key Laboratory of Optoelectronic Materials and Technologies , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Cailing Tong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Huan Jia
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yiran Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
8
|
Chen YT, Chang KC, Hu HT, Chen YL, Lin YH, Hsu CF, Chang CF, Chang KY, Wen JD. Coordination among tertiary base pairs results in an efficient frameshift-stimulating RNA pseudoknot. Nucleic Acids Res 2017; 45:6011-6022. [PMID: 28334864 PMCID: PMC5449628 DOI: 10.1093/nar/gkx134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/28/2022] Open
Abstract
Frameshifting is an essential process that regulates protein synthesis in many viruses. The ribosome may slip backward when encountering a frameshift motif on the messenger RNA, which usually contains a pseudoknot structure involving tertiary base pair interactions. Due to the lack of detailed molecular explanations, previous studies investigating which features of the pseudoknot are important to stimulate frameshifting have presented diverse conclusions. Here we constructed a bimolecular pseudoknot to dissect the interior tertiary base pairs and used single-molecule approaches to assess the structure targeted by ribosomes. We found that the first ribosome target stem was resistant to unwinding when the neighboring loop was confined along the stem; such constrained conformation was dependent on the presence of consecutive adenosines in this loop. Mutations that disrupted the distal base triples abolished all remaining tertiary base pairs. Changes in frameshifting efficiency correlated with the stem unwinding resistance. Our results demonstrate that various tertiary base pairs are coordinated inside a highly efficient frameshift-stimulating RNA pseudoknot and suggest a mechanism by which mechanical resistance of the pseudoknot may persistently act on translocating ribosomes.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Chun Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Teng Hu
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Lan Chen
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - You-Hsin Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chiung-Fang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Fu Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Kung-Yao Chang
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Phan A, Mailey K, Saeki J, Gu X, Schroeder SJ. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops. RNA (NEW YORK, N.Y.) 2017; 23:770-781. [PMID: 28213527 PMCID: PMC5393185 DOI: 10.1261/rna.059865.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/13/2017] [Indexed: 05/24/2023]
Abstract
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites.
Collapse
Affiliation(s)
- Andy Phan
- Department of Chemistry and Biochemistry
| | | | | | - Xiaobo Gu
- Department of Chemistry and Biochemistry
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Susan J Schroeder
- Department of Chemistry and Biochemistry
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
10
|
Zhong Z, Yang L, Zhang H, Shi J, Vandana JJ, Lam DTUH, Olsthoorn RCL, Lu L, Chen G. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation. Sci Rep 2016; 6:39549. [PMID: 28000744 PMCID: PMC5175198 DOI: 10.1038/srep39549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single-molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor-groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The -1 frameshifting efficiency is positively correlated with the cooperative one-step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between -1 frameshifting efficiency and unfolding rate at forces of 15-35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. No correlation was observed between thermal stability and -1 frameshifting efficiency.
Collapse
Affiliation(s)
- Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Haiping Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Jiahao Shi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - J. Jeya Vandana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Do Thuy Uyen Ha Lam
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- St Andrew’s Junior College, 5 Sorby Adams Drive, 357691 Singapore
| | - René C. L. Olsthoorn
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
11
|
Tan J, Ho JXJ, Zhong Z, Luo S, Chen G, Roca X. Noncanonical registers and base pairs in human 5' splice-site selection. Nucleic Acids Res 2016; 44:3908-21. [PMID: 26969736 PMCID: PMC4856993 DOI: 10.1093/nar/gkw163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/27/2022] Open
Abstract
Accurate recognition of splice sites is essential for pre-messenger RNA splicing. Mammalian 5' splice sites are mainly recognized by canonical base-pairing to the 5' end of U1 small nuclear RNA, yet we described multiple noncanonical base-pairing registers by shifting base-pair positions or allowing one-nucleotide bulges. By systematic mutational and suppressor U1 analyses, we prove three registers involving asymmetric loops and show that two-nucleotide bulges but not longer can form in this context. Importantly, we established that a noncanonical uridine-pseudouridine interaction in the 5' splice site/U1 helix contributes to the recognition of certain 5' splice sites. Thermal melting experiments support the formation of noncanonical registers and uridine-pseudouridine interactions. Overall, we experimentally validated or discarded the majority of predicted noncanonical registers, to derive a list of 5' splice sites using such alternative mechanisms that is much different from the original. This study allows not only the mechanistic understanding of the recognition of a wide diversity of mammalian 5' splice sites, but also the future development of better splice-site scoring methods that reliably predict the effects of disease-causing mutations at these sequences.
Collapse
Affiliation(s)
- Jiazi Tan
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jia Xin Jessie Ho
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Zhensheng Zhong
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Shufang Luo
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Gang Chen
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|