1
|
Becker J, Lielpetere A, Szczesny J, Ruff A, Conzuelo F, Schuhmann W. Assembling a low‐volume biofuel cell on a screen‐printed electrode for glucose sensing. ELECTROANAL 2022. [DOI: 10.1002/elan.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Le T, Lasseux D, Zhang L, Carucci C, Gounel S, Bichon S, Lorenzutti F, Kuhn A, Šafarik T, Mano N. Multiscale modelling of diffusion and enzymatic reaction in porous electrodes in Direct Electron Transfer mode. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Wang Q, Wang H, Ma Y, Cao X, Gao H. Effects of Electroactive materials on nerve cell behaviors and applications in peripheral nerve repair. Biomater Sci 2022; 10:6061-6076. [DOI: 10.1039/d2bm01216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral nerve damage can lead to loss of function or even complete disability, which bring about a huge burden on both the patient and society. Regulating nerve cell behavior and...
Collapse
|
4
|
Yang SY, Sencadas V, You SS, Jia NZX, Srinivasan SS, Huang HW, Ahmed AE, Liang JY, Traverso G. Powering Implantable and Ingestible Electronics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009289. [PMID: 34720792 PMCID: PMC8553224 DOI: 10.1002/adfm.202009289] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 05/28/2023]
Abstract
Implantable and ingestible biomedical electronic devices can be useful tools for detecting physiological and pathophysiological signals, and providing treatments that cannot be done externally. However, one major challenge in the development of these devices is the limited lifetime of their power sources. The state-of-the-art of powering technologies for implantable and ingestible electronics is reviewed here. The structure and power requirements of implantable and ingestible biomedical electronics are described to guide the development of powering technologies. These powering technologies include novel batteries that can be used as both power sources and for energy storage, devices that can harvest energy from the human body, and devices that can receive and operate with energy transferred from exogenous sources. Furthermore, potential sources of mechanical, chemical, and electromagnetic energy present around common target locations of implantable and ingestible electronics are thoroughly analyzed; energy harvesting and transfer methods befitting each energy source are also discussed. Developing power sources that are safe, compact, and have high volumetric energy densities is essential for realizing long-term in-body biomedical electronics and for enabling a new era of personalized healthcare.
Collapse
Affiliation(s)
- So-Yoon Yang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vitor Sencadas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Siheng Sean You
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neil Zi-Xun Jia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shriya Sruthi Srinivasan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hen-Wei Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abdelsalam Elrefaey Ahmed
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Ying Liang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Abstract
BACKGROUND With the increased use of implanted medical devices follows a large number of explantations. Implants are removed for a wide range of reasons, including manufacturing defects, recovery making the device unnecessary, battery depletion, availability of new and better models, and patients asking for a removal. Explantation gives rise to a wide range of ethical issues, but the discussion of these problems is scattered over many clinical disciplines. METHODS Information from multiple clinical disciplines was synthesized and analysed in order to provide a comprehensive approach to the ethical issues involved in the explantation of medical implants. RESULTS Discussions and recommendations are offered on pre-implantation information about a possible future explantation, risk-benefit assessments of explantation, elective explantations demanded by the patient, explantation of implants inserted for a clinical trial, patient registers, quality assurance, routines for investigating explanted implants, and demands on manufacturers to prioritize increased service time in battery-driven implants and to market fewer but more thoroughly tested models of implants. CONCLUSION Special emphasis is given to the issue of control or ownership over implants, which underlies many of the ethical problems concerning explantation. It is proposed that just like transplants, implants that fulfil functions normally carried out by biological organs should be counted as supplemented body parts. This means that the patient has a strong and inalienable right to the implant, but upon explantation it loses that status.
Collapse
Affiliation(s)
- Sven Ove Hansson
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
Pankratova G, Bollella P, Pankratov D, Gorton L. Supercapacitive biofuel cells. Curr Opin Biotechnol 2021; 73:179-187. [PMID: 34481244 DOI: 10.1016/j.copbio.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Supercapacitive biofuel cells' (SBFCs) most recent advancements are herein disclosed. In conventional SBFCs the biocomponent is employed as the pseudocapacitive component, while in self-charging biodevices it also works as the biocatalyst. The performance of different types of SBFCs are summarized according to the categorization based on the biocatalyst employed: supercapacitive microbial fuel cells (s-MFCs), supercapacitive biophotovoltaics (SBPV) and supercapacitive enzymatic fuel cells (s-EFCs). SBFCs could be considered as promising 'alternative' energy devices (low-cost, environmentally friendly, and technically undemanding electric power sources etc.) being suitable for powering a new generation of miniaturized electronic applications.
Collapse
Affiliation(s)
- Galina Pankratova
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Paolo Bollella
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Dmitry Pankratov
- Department of Bioengineering, University of Antwerp, B-2020 Antwerp, Belgium
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
7
|
Wang L, Wu X, Su BSQ, Song R, Zhang JR, Zhu JJ. Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 2021. [DOI: 10.1002/aesr.202100031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Xiaoge Wu
- Environment Science and Engineering College Yangzhou University Yangzhou 225009 China
| | - B. S. Qi‐wen Su
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rongbin Song
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
8
|
Autotolerant ceruloplasmin based biocathodes for implanted biological power sources. Bioelectrochemistry 2021; 140:107794. [PMID: 33744681 DOI: 10.1016/j.bioelechem.2021.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/23/2022]
Abstract
High-performance autotolerant bioelectrodes should be ideally suited to design implantable bioelectronic devices. Because of its high redox potential and ability to reduce oxygen directly to water, human ceruloplasmin, HCp, the only blue multicopper oxidase present in human plasma, appears to be the ultimate biocatalyst for oxygen biosensors and also biocathodes in biological power sources. In comparison to fungal and plant blue multicopper oxidases, e.g. Myrothecium verrucaria bilirubin oxidase and Rhus vernicifera laccase, respectively, the inflammatory response to HCp in human blood is significantly reduced. Partial purification of HCp allowed to preserve the native conformation of the enzyme and its biocatalytic activity. Therefore, electrochemical studies were carried out with the partially purified enzyme immobilised on nanostructured graphite electrodes at physiological pH and temperature. Amperometric investigations revealed low reductive current densities, i.e. about 1.65 µA cm-2 in oxygenated electrolyte and in the absence of any mediator, demonstrating nevertheless direct electron transfer based O2 bioelectroreduction by HCp for the first time. The reductive current density obtained in the mediated system was about 12 µA cm-2. Even though the inflammatory response of HCp is diminished in human blood, inadequate bioelectrocatalytic performance hinders its use as a cathodic bioelement in a biofuel cell.
Collapse
|
9
|
Bollella P, Boeva Z, Latonen RM, Kano K, Gorton L, Bobacka J. Highly sensitive and stable fructose self-powered biosensor based on a self-charging biosupercapacitor. Biosens Bioelectron 2020; 176:112909. [PMID: 33385803 DOI: 10.1016/j.bios.2020.112909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Herein, we present an alternative approach to obtain a highly sensitive and stable self-powered biosensor that was used to detect D-fructose as proof of concept.In this platform, we perform a two-step process, viz. self-charging the biosupercapacitor for a constant time by using D-fructose as fuel and using the stored charge to realize the detection of D-fructose by performing several polarization curves at different D-fructose concentrations. The proposed BSC shows an instantaneous power density release of 17.6 mW cm-2 and 3.8 mW cm-2 in pulse mode and at constant load, respectively. Moreover, the power density achieved for the self-charging BSC in pulse mode or under constant load allows for an enhancement of the sensitivity of the device up to 10 times (3.82 ± 0.01 mW cm-2 mM-1, charging time = 70 min) compared to the BSC in continuous operation mode and 100 times compared to the normal enzymatic fuel cell. The platform can potentially be employed as a self-powered biosensor in food or biomedical applications.
Collapse
Affiliation(s)
- Paolo Bollella
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Zhanna Boeva
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Rose-Marie Latonen
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland.
| |
Collapse
|
10
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Xiao X, Leech D, Zhang J. An oxygen-reducing biocathode with "oxygen tanks". Chem Commun (Camb) 2020; 56:9767-9770. [PMID: 32701109 DOI: 10.1039/d0cc04031b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polytetrafluoroethylene submicro-rod materials, serving as micro-scaled "oxygen tanks" and binders, have been mixed into Os redox polymer-based bilirubin oxidase cathodes, leading to both enhanced limiting current density of the oxygen reduction reaction in neutral pH and operational stability over 16 hours.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Dónal Leech
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
12
|
Le TD, Lasseux D. Current and Optimal Dimensions Predictions for a Porous Micro‐Electrode. ChemElectroChem 2020. [DOI: 10.1002/celc.202000508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tien D. Le
- I2MUMR 5295CNRSUniv. BordeauxEsplanade des Arts et Métiers33405 Talence CEDEXFrance - Université de Lorraine CNRS, LEMTA F-54000 Nancy France
| | - Didier Lasseux
- I2MUMR 5295CNRSUniv. Bordeaux Esplanade des Arts et Métiers 33405 Talence CEDEX France
| |
Collapse
|
13
|
Bollella P, Katz E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3517. [PMID: 32575916 PMCID: PMC7349488 DOI: 10.3390/s20123517] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022]
Abstract
This review summarizes the fundamentals of the phenomenon of electron transfer (ET) reactions occurring in redox enzymes that were widely employed for the development of electroanalytical devices, like biosensors, and enzymatic fuel cells (EFCs). A brief introduction on the ET observed in proteins/enzymes and its paradigms (e.g., classification of ET mechanisms, maximal distance at which is observed direct electron transfer, etc.) are given. Moreover, the theoretical aspects related to direct electron transfer (DET) are resumed as a guideline for newcomers to the field. Snapshots on the ET theory formulated by Rudolph A. Marcus and on the mathematical model used to calculate the ET rate constant formulated by Laviron are provided. Particular attention is devoted to the case of glucose oxidase (GOx) that has been erroneously classified as an enzyme able to transfer electrons directly. Thereafter, all tools available to investigate ET issues are reported addressing the discussions toward the development of new methodology to tackle ET issues. In conclusion, the trends toward upcoming practical applications are suggested as well as some directions in fundamental studies of bioelectrochemistry.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, NY 13699-5810, USA;
| | | |
Collapse
|
14
|
Real-time glucose monitoring system containing enzymatic sensor and enzymatic reference electrodes. Biosens Bioelectron 2020; 164:112338. [PMID: 32553347 DOI: 10.1016/j.bios.2020.112338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023]
Abstract
Every electrochemical biosensor uses two or three electrode setup, which involves sensing electrode for a specific reaction, metal/salt reference electrode (i.e., Ag/AgCl or Hg/Hg2Cl2) for the control of the potential and, is some cases, counter electrode for the compensation of the current. This setup has significant flaws related to metal/salt reference electrodes: they are bulky and difficult to miniaturize, leak electrolyte to the medium, lose the ability to define the electrochemical potential precisely in time, consequently, have to be updated or replaced. This causes problems when the biosensor cannot be easily replaced (e.g., implanted electronics). Here we present a fully enzymatic real-time glucose monitoring system capable of referencing its own electrochemical potential. Using sensing electrode composed of wired glucose dehydrogenase and enzymatic reference electrode composed of wired laccase we have created a stable and accurate electrode system, which measured fluxes in concentration of glucose in a physiological range (3-8 mM), and demonstrated performance of the designed system in undiluted human serum. In addition, our designed enzymatic reference electrode is universal and may be applied for other biosensors, thus open possibilities for the new generation of implantable devices for healthcare monitoring.
Collapse
|
15
|
Nanocatalysts Containing Direct Electron Transfer-Capable Oxidoreductases: Recent Advances and Applications. Catalysts 2019. [DOI: 10.3390/catal10010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Direct electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an additional electron mediator. More than 100 enzymes are known to be capable of working in DET conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby, to the best of our knowledge, we present the first review concerning such nanocatalytic systems involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases, provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using DET-capable oxidoreductases, and highlight common strategies and challenges that are usually associated with those type catalytic systems. Finally, we end this paper with the concluding discussion, where we present future perspectives and possible research directions.
Collapse
|
16
|
Shen F, Pankratov D, Halder A, Xiao X, Toscano MD, Zhang J, Ulstrup J, Gorton L, Chi Q. Two-dimensional graphene paper supported flexible enzymatic fuel cells. NANOSCALE ADVANCES 2019; 1:2562-2570. [PMID: 36132730 PMCID: PMC9416935 DOI: 10.1039/c9na00178f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
Application of enzymatic biofuel cells (EBFCs) in wearable or implantable biomedical devices requires flexible and biocompatible electrode materials. To this end, freestanding and low-cost graphene paper is emerging among the most promising support materials. In this work, we have exploited the potential of using graphene paper with a two-dimensional active surface (2D-GP) as a carrier for enzyme immobilization to fabricate EBFCs, representing the first case of flexible graphene papers directly used in EBFCs. The 2D-GP electrodes were prepared via the assembly of graphene oxide (GO) nanosheets into a paper-like architecture, followed by reduction to form layered and cross-linked networks with good mechanical strength, high conductivity and little dependence on the degree of mechanical bending. 2D-GP electrodes served as both a current collector and an enzyme loading substrate that can be used directly as a bioanode and biocathode. Pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOx) adsorbed on the 2D-GP electrodes both retain their biocatalytic activities. Electron transfer (ET) at the bioanode required Meldola blue (MB) as an ET mediator to shuttle electrons between PQQ-GDH and the electrode, but direct electron transfer (DET) at the biocathode was achieved. The resulting glucose/oxygen EBFC displayed a notable mechanical flexibility, with a wide open circuit voltage range up to 0.665 V and a maximum power density of approximately 4 μW cm-2 both fully competitive with reported values for related EBFCs, and with mechanical flexibility and facile enzyme immobilization as novel merits.
Collapse
Affiliation(s)
- Fei Shen
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Dmitry Pankratov
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Arnab Halder
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | | | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University P.O. Box 124 SE-22100 Lund Sweden
| | - Qijin Chi
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| |
Collapse
|
17
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
18
|
|
19
|
Suraniti E, Merzeau P, Roche J, Gounel S, Mark AG, Fischer P, Mano N, Kuhn A. Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source. Nat Commun 2018; 9:3229. [PMID: 30104644 PMCID: PMC6089969 DOI: 10.1038/s41467-018-05704-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/23/2018] [Indexed: 12/05/2022] Open
Abstract
Chemical systems do not allow the coupling of energy from several simple reactions to drive a subsequent reaction, which takes place in the same medium and leads to a product with a higher energy than the one released during the first reaction. Gibbs energy considerations thus are not favorable to drive e.g., water splitting by the direct oxidation of glucose as a model reaction. Here, we show that it is nevertheless possible to carry out such an energetically uphill reaction, if the electrons released in the oxidation reaction are temporarily stored in an electromagnetic system, which is then used to raise the electrons' potential energy so that they can power the electrolysis of water in a second step. We thereby demonstrate the general concept that lower energy delivering chemical reactions can be used to enable the formation of higher energy consuming reaction products in a closed system.
Collapse
Affiliation(s)
- Emmanuel Suraniti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Pascal Merzeau
- Centre de Recherche Paul Pascal (CRPP), CNRS UMR 5031, Univ. Bordeaux, 115 Avenue du Docteur Schweitzer, 33600, Pessac, France
| | - Jérôme Roche
- CIRIMAT, Université de Toulouse, UPS-INP-CNRS, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Sébastien Gounel
- Centre de Recherche Paul Pascal (CRPP), CNRS UMR 5031, Univ. Bordeaux, 115 Avenue du Docteur Schweitzer, 33600, Pessac, France
| | - Andrew G Mark
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Nicolas Mano
- Centre de Recherche Paul Pascal (CRPP), CNRS UMR 5031, Univ. Bordeaux, 115 Avenue du Docteur Schweitzer, 33600, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33600, Pessac, France.
| |
Collapse
|
20
|
Bollella P, Gorton L, Antiochia R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1319. [PMID: 29695133 PMCID: PMC5982196 DOI: 10.3390/s18051319] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
Abstract
Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
21
|
El Ichi-Ribault S, Alcaraz JP, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, Martin DK. Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.156] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E. Nanoporous Gold-Based Biofuel Cells on Contact Lenses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7107-7116. [PMID: 29406691 DOI: 10.1021/acsami.7b18708] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A lactate/O2 enzymatic biofuel cell (EBFC) was prepared as a potential power source for wearable microelectronic devices. Mechanically stable and flexible nanoporous gold (NPG) electrodes were prepared using an electrochemical dealloying method consisting of a pre-anodization process and a subsequent electrochemical cleaning step. Bioanodes were prepared by the electrodeposition of an Os polymer and Pediococcus sp. lactate oxidase onto the NPG electrode. The electrocatalytic response to lactate could be tuned by adjusting the deposition time. Bilirubin oxidase from Myrothecium verrucaria was covalently attached to a diazonium-modified NPG surface. A flexible EBFC was prepared by placing the electrodes between two commercially available contact lenses to avoid direct contact with the eye. When tested in air-equilibrated artificial tear solutions (3 mM lactate), a maximum power density of 1.7 ± 0.1 μW cm-2 and an open-circuit voltage of 380 ± 28 mV were obtained, values slightly lower than those obtained in phosphate buffer solution (2.4 ± 0.2 μW cm-2 and 455 ± 21 mV, respectively). The decrease was mainly attributed to interference from ascorbate. After 5.5 h of operation, the EBFC retained 20% of the initial power output.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick V94 T9PX, Ireland
| | - Till Siepenkoetter
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick V94 T9PX, Ireland
| | - Peter Ó Conghaile
- School of Chemistry & Ryan Institute, National University of Ireland Galway , Galway H91 TK33, Ireland
| | - Dónal Leech
- School of Chemistry & Ryan Institute, National University of Ireland Galway , Galway H91 TK33, Ireland
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick V94 T9PX, Ireland
| |
Collapse
|
23
|
An oxygen-independent and membrane-less glucose biobattery/supercapacitor hybrid device. Biosens Bioelectron 2017; 98:421-427. [DOI: 10.1016/j.bios.2017.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 11/30/2022]
|
24
|
González-Arribas E, Bobrowski T, Di Bari C, Sliozberg K, Ludwig R, Toscano MD, De Lacey AL, Pita M, Schuhmann W, Shleev S. Transparent, mediator- and membrane-free enzymatic fuel cell based on nanostructured chemically modified indium tin oxide electrodes. Biosens Bioelectron 2017; 97:46-52. [DOI: 10.1016/j.bios.2017.05.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
25
|
Herkendell K, Tel-Vered R, Stemmer A. Switchable aerobic/anaerobic multi-substrate biofuel cell operating on anodic and cathodic enzymatic cascade assemblies. NANOSCALE 2017; 9:14118-14126. [PMID: 28902212 DOI: 10.1039/c7nr06233h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzymatic fuel cells may become more accessible for applications powering portable electronic devices by broadening the range of potentially usable fuels and oxidizers. In this work we demonstrate the operation of an integrated, yet versatile multi-substrate biofuel cell utilizing either glucose, fructose, sucrose or combinations of thereof as biofuels, and molecular oxygen originating from solution phase and/or an internal chemical source, as the oxidizer. In order to achieve this goal we designed an enzymatic cascade-functionalized anode consisting of invertase (INV), mutarotase (MUT), glucose oxidase (GOX), and fructose dehydrogenase (FDH), deposited on top of a mesoporous carbon nanoparticle matrix, in which electron relay molecules had been entrapped. The anode was then conjugated to a compatible enzymatic cathode that employs a cascade of catalase (CAT) and bilirubin oxidase (BOD), allowing the cell to operate in an aerobic environment and/or to utilize, under anaerobic conditions for instance, hydrogen peroxide as a source for the oxygen oxidizer. While operated in the presence of the sugar mixture and hydrogen peroxide, the power output of the dually cascaded biofuel cell reaches a peak power density of 0.25 mW cm-2 and demonstrates an open circuit potential of 0.65 V. To our knowledge this is the first reported biofuel cell that discharges with both anodic and cathodic enzymatic cascade architectures and the first biofuel cell that is repeatedly switched between aerobic and anaerobic conditions without any significant decrease in the discharge performance.
Collapse
Affiliation(s)
- Katharina Herkendell
- ETH Zürich, Nanotechnology Group, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|