1
|
Liu Z, Zhao X, Chu Q, Feng Y. Recent Advances in Stimuli-Responsive Metallogels. Molecules 2023; 28:molecules28052274. [PMID: 36903517 PMCID: PMC10005064 DOI: 10.3390/molecules28052274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, stimuli-responsive supramolecular gels have received significant attention because their properties can be modulated through external stimuli such as heat, light, electricity, magnetic fields, mechanical stress, pH, ions, chemicals and enzymes. Among these gels, stimuli-responsive supramolecular metallogels have shown promising applications in material science because of their fascinating redox, optical, electronic and magnetic properties. In this review, research progress on stimuli-responsive supramolecular metallogels in recent years is systematically summarized. According to external stimulus sources, stimuli-responsive supramolecular metallogels, including chemical, physical and multiple stimuli-responsive metallogels, are discussed separately. Moreover, challenges, suggestions and opportunities regarding the development of novel stimuli-responsive metallogels are presented. We believe the knowledge and inspiration gained from this review will deepen the current understanding of stimuli-responsive smart metallogels and encourage more scientists to provide valuable contributions to this topic in the coming decades.
Collapse
Affiliation(s)
- Zhixiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (Z.L.); (Y.F.)
| | - Xiaofang Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Qingkai Chu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
- Correspondence: (Z.L.); (Y.F.)
| |
Collapse
|
2
|
La Manna S, Florio D, Di Natale C, Marasco D. Modulation of hydrogel networks by metal ions. J Pept Sci 2022:e3474. [PMID: 36579727 DOI: 10.1002/psc.3474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles. This review aims to discuss recent insights into the supramolecular assembly of hydrogels involving metal ions, with a focus on self-assembling peptides, as well as applications of metallogels in biomedical fields including tissue engineering, sensing, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Concetta Di Natale
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
D'Souza A, Marshall LR, Yoon J, Kulesha A, Edirisinghe DIU, Chandrasekaran S, Rathee P, Prabhakar R, Makhlynets OV. Peptide hydrogel with self-healing and redox-responsive properties. NANO CONVERGENCE 2022; 9:18. [PMID: 35478076 PMCID: PMC9046503 DOI: 10.1186/s40580-022-00309-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/06/2022] [Indexed: 06/12/2023]
Abstract
We have rationally designed a peptide that assembles into a redox-responsive, antimicrobial metallohydrogel. The resulting self-healing material can be rapidly reduced by ascorbate under physiological conditions and demonstrates a remarkable 160-fold change in hydrogel stiffness upon reduction. We provide a computational model of the hydrogel, explaining why position of nitrogen in non-natural amino acid pyridyl-alanine results in drastically different gelation properties of peptides with metal ions. Given its antimicrobial and rheological properties, the newly designed hydrogel can be used for removable wound dressing application, addressing a major unmet need in clinical care.
Collapse
Affiliation(s)
- Areetha D'Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Jennifer Yoon
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Alona Kulesha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Dona I U Edirisinghe
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Siddarth Chandrasekaran
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14583, USA
| | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
4
|
Anion-Responsive Fluorescent Supramolecular Gels. Molecules 2022; 27:molecules27041257. [PMID: 35209044 PMCID: PMC8876235 DOI: 10.3390/molecules27041257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Three novel bis-urea fluorescent low-molecular-weight gelators (LMWGs) based on the tetraethyl diphenylmethane spacer—namely, L1, L2, and L3, bearing indole, dansyl, and quinoline units as fluorogenic fragments, respectively, are able to form gel in different solvents. L2 and L3 gel in apolar solvents such as chlorobenzene and nitrobenzene. Gelator L1 is able to gel in the polar solvent mixture DMSO/H2O (H2O 15% v/v). This allowed the study of gel formation in the presence of anions as a third component. An interesting anion-dependent gel formation was observed with fluoride and benzoate inhibiting the gelation process and H2PO4−, thus causing a delay of 24 h in the gel formation. The interaction of L1 with the anions in solution was clarified by 1H-NMR titrations and the differences in the cooperativity of the two types of NH H-bond donor groups (one indole NH and two urea NHs) on L1 when binding BzO− or H2PO4− were taken into account to explain the inhibition of the gelation in the presence of BzO−. DFT calculations corroborate this hypothesis and, more importantly, demonstrate considering a trimeric model of the L1 gel that BzO− favours its disruption into monomers inhibiting the gel formation.
Collapse
|
5
|
Gurunarayanan V, Ramapanicker R. Amphiphilic conjugates of ferrocene with amino acids and peptides: Design, synthesis, and studies on their aggregation behavior. J Pept Sci 2021; 27:e3332. [PMID: 33884698 DOI: 10.1002/psc.3332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/08/2022]
Abstract
A new class of ferrocenyl surfactants based on covalent linkage between amino acids or peptides and ferrocene was designed. Accordingly, five ferrocenyl amphiphiles, FcS1-5, were synthesized, and their aggregation behaviors in aqueous solutions were studied. Compared to the other surfactants containing ferrocenyl units, FcS have a relatively smaller size and low molecular weight and are easy to synthesize. The influences of the number of carboxylic acid head groups and the number of Fc group in the hydrophobic tail, on the stability and aggregation behavior of these amphiphiles in aqueous medium, were explored to deduce the structure property relationships. A combination of fluorescence and dynamic light scattering techniques was used to elucidate the behavior of these molecules. A good agreement between the results obtained using different techniques was observed.
Collapse
Affiliation(s)
- Vinithra Gurunarayanan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ramesh Ramapanicker
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
6
|
Santi S, Bisello A, Cardena R, Tomelleri S, Schiesari R, Biondi B, Crisma M, Formaggio F. Flat, C α,β -Didehydroalanine Foldamers with Ferrocene Pendants: Assessing the Role of α-Peptide Dipolar Moments. Chempluschem 2021; 86:723-730. [PMID: 33825347 DOI: 10.1002/cplu.202100072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Indexed: 12/28/2022]
Abstract
The foldamer field is continuously expanding as it allows to produce molecules endowed with 3D-structures and functions never observed in nature. We synthesized flat foldamers based on the natural, but non-coded, Cα,β -didehydroalanine α-amino acid, and covalently linked to them two ferrocene (Fc) moieties, as redox probes. These conjugates retain the flat and extended conformation of the 2.05 -helix, both in solution and in the crystal state (X-ray diffraction). Cyclic voltammetry measurements agree with the adoption of the 2.05 -helix, characterized by a negligible dipole moment. Thus, elongated α-peptide stretches of this type are insulators rather than charge conductors, the latter being constituted by peptide α-helices. Also, our homo-tetrapeptide has a N-to-C length of about 18.2 Å, almost double than that (9.7 Å) of an α-helical α-tetrapeptide.
Collapse
Affiliation(s)
- Saverio Santi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Annalisa Bisello
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Roberta Cardena
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Silvia Tomelleri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Renato Schiesari
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
7
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
8
|
Román T, Ramirez D, Fierro-Medina R, Santillan R, Farfán N. Ferrocene and Organotin (IV) Conjugates Containing Amino Acids and Peptides: A Promising Strategy for Searching New Therapeutic and Diagnostic Tools. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201001154259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Organometallic complexes are an important class of synthetic reagents and are of
great interest due to their versatility and wide biological application. The cationic nature of the
coordination nucleus facilitates its interaction with biological molecules such as amino acids,
proteins, and nucleic acids. The functionalization of peptides or amino acids with organometallic
motifs is a novel strategy for the design and development of molecules with greater biological
activity, stability in biological environments, and selectivity for specific targets, which
make them valuable tools for designing and obtaining molecules with therapeutic applications.
The physicochemical properties of ferrocene make it ideal for drug development, due to its
structure, stability in aqueous solutions, redox properties, and low toxicity. In the same way,
organotin (IV) derivatives have great potential for drug development because of their multiple
biological activities, wide structural versatility, high degree of stability, and low toxicity.
However, the synthesis of these drugs based on organometallic molecules containing ferrocene or organotin (IV) is
quite complex and represents a challenge nowadays; for this reason, it is necessary to design and implement procedures
to obtain molecules with a high degree of purity, in sufficient quantities, and at low cost. This review describes
the strategies of synthesis used up to now for the preparation of organometallic amino acids and peptides
containing ferrocene or organotin (IV) derivates, as well as their impact on the development of therapeutic agents.
Collapse
Affiliation(s)
- Tatiana Román
- Departamento de Farmacia, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - David Ramirez
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Ricardo Fierro-Medina
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Rosa Santillan
- Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, Av Instituto Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de Mexico, CDMX, Mexico
| | - Norberto Farfán
- Facultad de Quimica, Departamento de Quimica Organica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Circuito Exterior S/N Delegacion Coyoacan, C.P. 04510 Ciudad Universitaria, Ciudad de Mexico, CDMX, Mexico
| |
Collapse
|
9
|
|
10
|
Falcone N, Shao T, Andoy NMO, Rashid R, Sullan RMA, Sun X, Kraatz HB. Multi-component peptide hydrogels - a systematic study incorporating biomolecules for the exploration of diverse, tuneable biomaterials. Biomater Sci 2020; 8:5601-5614. [PMID: 32832942 DOI: 10.1039/d0bm01104e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptide-based supramolecular gels can be designed to be functional "smart" materials that have applications in drug delivery, tissue engineering, and supramolecular chemistry. Although many multi-component gel systems have been designed and reported, many of these applications still rely solely on single-component gel systems which limits the functionalities of the materials. Multi-component self-assembly leads to the formation of highly ordered and complex architectures while offering the possibility to generate hydrogels with interesting properties including functional complexity and diverse morphologies. Being able to incorporate various classes of biomolecules can allow for tailoring the materials' functionalities to specific application needs. Here, a novel peptide amphiphile, myristyl-Phe-Phe (C14-FF), was synthesized and explored for hydrogel formation. The hydrogel possesses a nanofiber matrix morphology, composed of β-sheet aggregates, a record-low gelation concentration for this class of compounds, and a unique solvent-dependent helical switch. The C14-FF hydrogel was then explored with various classes of biomolecules (carbohydrates, vitamins, proteins, building blocks of HA) to generate a multi-component library of gels that have potential to represent the complex natural extracellular matrix. Selected multi-component gels exhibit an excellent compatibility with mesenchymal stem cells showing high cell viability percentages, which holds great promise for applications in regenerative therapy.
Collapse
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hu B, Lian Z, Zhou Z, Shi L, Yu Z. Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5529-5551. [DOI: 10.1021/acsabm.0c00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhengwen Lian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
12
|
Ferrag C, Abdinejad M, Kerman K. Synthesis of a polyacrylamide hydrogel using CO2 at room temperature. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon dioxide (CO2) is an environmentally harmful “greenhouse gas” that is present in abundant quantities in the earth’s atmosphere. Thus, the sequestration and conversion of CO2 to value-added organic chemicals is of environmental and economical importance. In this proof-of-concept study, amine groups of acrylamide compounds were found to react with CO2 under ambient conditions to form a polyacrylamide hydrogel. This composite was characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and electrospray ionization mass spectrometry (ESI–MS), which confirmed successful synthesis and demonstrated all characteristics representative of a typical hydrogel material. Rheology analyses further proved the formation of the hydrogel, as well as its self-healing nature. The novel approach proposed in this work can potentially be used in the construction of versatile amine-based gel materials for efficient CO2 utilization applications.
Collapse
Affiliation(s)
- Celia Ferrag
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Maryam Abdinejad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
13
|
Remarkable Morphology Transformation from Fiber to Nanotube of a Histidine Organogel in Presence of a Binuclear Iron(III)–Sulfur Complex. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01299-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Falcone N, Shao T, Rashid R, Kraatz HB. Enzyme Entrapment in Amphiphilic Myristyl-Phenylalanine Hydrogels. Molecules 2019; 24:E2884. [PMID: 31398913 PMCID: PMC6721053 DOI: 10.3390/molecules24162884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 01/03/2023] Open
Abstract
Supramolecular amino acid and peptide hydrogels are functional materials with a wide range of applications, however, their ability to serve as matrices for enzyme entrapment have been rarely explored. Two amino acid conjugates were synthesized and explored for hydrogel formation. These hydrogels were characterized in terms of strength and morphology, and their ability to entrap enzymes while keeping them active and reusable was explored. It was found that the hydrogels were able to successfully entrap two common and significant enzymes-horseradish peroxidase and -amylase-thus keeping them active and stable, along with inducing recycling capabilities, which has potential to further advance the industrial biotransformation field.
Collapse
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada
| | - Tsuimy Shao
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
| | - Roomina Rashid
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5, Toronto, Canada.
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada.
| |
Collapse
|
15
|
Falcone N, Shao T, Sun X, Kraatz HB. Systematic exploration of the pH dependence of a peptide hydrogel. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive peptide gels are a growing class of functional biomaterials that are involved in many applications in research. Here, we present a novel di-peptide hydrogel from the compound Boc–Phe–Trp–OH in various buffer and pH conditions. We examine the effects of different stimuli, including temperature and pH, on the mechanical strength of the gels through frequency rheology studies. We found that this hydrogelator is highly pH dependent, only forming a gel in a narrow range of pH 6–7. This hydrogelator hold promise for the development of new stimuli-responsive biomaterials for specific applications that require this type of specific stimuli.
Collapse
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Tsuimy Shao
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College, 51 Huzhou Street, Hangzhaou 310015, China
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
16
|
Yang X, Yang B, Wang Y, Qi W, Xing Q, Zhang L, Liu X, Hu Q, Su R, He Z. In situ fabrication of multifunctional gold-amino acid superstructures based on self-assembly. Chem Commun (Camb) 2019; 55:3967-3970. [PMID: 30874693 DOI: 10.1039/c9cc01025d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facial strategy to construct multifunctional gold-amino acid superstructures is reported. The ferrocene-tryptophan conjugate could self-assemble into three-dimensional microflowers. What's more, gold nanoparticles could be biomineralized on the surface of the microflowers, achieving gold-amino acid superstructures. The formed superstructures exhibited significant photothermal effects and catalytic activity.
Collapse
Affiliation(s)
- Xuejiao Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Bohao Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China and The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
| | - Qiguo Xing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Xinyu Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Qing Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China and The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
17
|
Basuyaux G, Desmarchelier A, Gontard G, Vanthuyne N, Moussa J, Amouri H, Raynal M, Bouteiller L. Extra hydrogen bonding interactions by peripheral indole groups stabilize benzene-1,3,5-tricarboxamide helical assemblies. Chem Commun (Camb) 2019; 55:8548-8551. [PMID: 31268082 DOI: 10.1039/c9cc03906f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Benzene-1,3,5-tricarboxamide monomers derived from alkyl esters of tryptophan (BTA Trp) self-assemble into helices with an inner threefold hydrogen bond network surrounded by a second network involving the indole N-H groups. As a consequence of this extra stabilization of its helical assemblies, BTA Trp forms more viscous solutions than a range of ester and alkyl BTAs.
Collapse
Affiliation(s)
- Gaëtan Basuyaux
- Sorbonne Université CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005 Paris, France.
| | - Alaric Desmarchelier
- Sorbonne Université CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005 Paris, France.
| | - Geoffrey Gontard
- Sorbonne Université CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005 Paris, France.
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313, 13397 Marseille Cedex 20, France
| | - Jamal Moussa
- Sorbonne Université CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005 Paris, France.
| | - Hani Amouri
- Sorbonne Université CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005 Paris, France.
| | - Matthieu Raynal
- Sorbonne Université CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005 Paris, France.
| | - Laurent Bouteiller
- Sorbonne Université CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
18
|
Falcone N, Kraatz HB. Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuli-Responsive Properties in Biomedical Applications. Chemistry 2018; 24:14316-14328. [DOI: 10.1002/chem.201801247] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St M5S 3E5 Toronto Canada
- Department of Physical and Environmental Science; University of Toronto Scarborough; 1065 Military Trail M1C 1A4 Toronto Canada
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St M5S 3E5 Toronto Canada
- Department of Physical and Environmental Science; University of Toronto Scarborough; 1065 Military Trail M1C 1A4 Toronto Canada
- Department of Chemistry; University of Toronto; 80 St. George St M5S 3H6 Toronto Canada
| |
Collapse
|
19
|
Diaferia C, Balasco N, Sibillano T, Giannini C, Vitagliano L, Morelli G, Accardo A. Structural Characterization of Self-Assembled Tetra-Tryptophan Based Nanostructures: Variations on a Common Theme. Chemphyschem 2018. [PMID: 29542851 DOI: 10.1002/cphc.201800026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the years, a large number of multidisciplinary investigations has unveiled that the self-assembly of short peptides and even of individual amino acids can generate a variety of different biomaterials. In this framework, we have recently reported that polyethylene glycol (PEG) conjugates of short homopeptides, containing aromatic amino acids such as phenylalanine (Phe, F) and naphthylalanine (Nal), are able to form elongated fibrillary aggregates having interesting chemical and physical properties. We here extend these analyses characterizing the self-assembling propensity of PEG6 -W4, a PEG adduct of the tetra-tryptophan (W4) sequence. A comprehensive structural characterization of PEG6 -W4 was obtained, both in solution and at the solid state, through the combination of spectroscopic, microscopic, X-ray scattering and computational techniques. Collectively, these studies demonstrate that this peptide is able to self-assemble in fibrillary networks characterized by a cross β-structure spine. The present findings clearly demonstrate that aromatic residues display a general propensity to induce self-aggregation phenomenon, despite the significant differences in the physicochemical properties of their side chains.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-, Naples, Italy
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples (Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples (Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-, Naples, Italy
| |
Collapse
|