1
|
Tuning the Photophysics of Two-Arm Bis[(dimethylamino)styryl]benzene Derivatives by Heterocyclic Substitution. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248725. [PMID: 36557858 PMCID: PMC9787945 DOI: 10.3390/molecules27248725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The identification of novel molecular systems with high fluorescence and significant non-linear optical (NLO) properties is a hot topic in the continuous search for new emissive probes. Here, the photobehavior of three two-arm bis[(dimethylamino)styryl]benzene derivatives, where the central benzene was replaced by pyridine, furan, or thiophene, was studied by stationary and time-resolved spectroscopic techniques with ns and fs resolution. The three molecules under investigation all showed positive fluorosolvatochromism, due to intramolecular charge-transfer (ICT) dynamics from the electron-donor dimethylamino groups, and significant fluorescence quantum yields, because of the population of a planar and emissive ICT state stabilized by intramolecular hydrogen-bond-like interactions. The NLO properties (hyperpolarizability coefficient and TPA cross-section) were also measured. The obtained results allowed the role of the central heteroaromatic ring to be disclosed. In particular, the introduction of the thiophene ring guarantees high fluorescent quantum yields irrespective of the polarity of the medium, and the largest hyperpolarizability coefficient because of the increased conjugation. An important and structure-dependent involvement of the triplet state was also highlighted, with the intersystem crossing being competitive with fluorescence, especially in the thiophene derivative, where the triplet was found to significantly sensitize molecular oxygen even in polar environment, leading to possible applications in photodynamic therapy.
Collapse
|
2
|
Cesaretti A, Mencaroni L, Bonaccorso C, Botti V, Calzoni E, Carlotti B, Fortuna CG, Montegiove N, Spalletti A, Elisei F. Amphiphilicity-Controlled Localization of Red Emitting Bicationic Fluorophores in Tumor Cells Acting as Bio-Probes and Anticancer Drugs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123713. [PMID: 35744843 PMCID: PMC9230006 DOI: 10.3390/molecules27123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Small organic molecules arouse lively interest for their plethora of possible biological applications, such as anticancer therapy, for their ability to interact with nucleic acids, or bioimaging, thanks to their fluorescence emission. Here, a panchromatic series of styryl-azinium bicationic dyes, which have already proved to exhibit high water-solubility and significant red fluorescence in water, were investigated through spectrofluorimetric titrations to assess the extent of their association constants with DNA and RNA. Femtosecond-resolved transient absorption spectroscopy was also employed to characterize the changes in the photophysical properties of these fluorophores upon interaction with their biological targets. Finally, in vitro experiments conducted on tumor cell lines revealed that some of the bicationic fluorophores had a peculiar localization within cell nuclei exerting important antiproliferative effects, others were instead found to localize in the cytoplasm without leading to cell death, being useful to mark specific organelles in light of live cell bioimaging. Interestingly, this molecule-dependent behavior matched the different amphiphilicity featured by these bioactive compounds, which are thus expected to be caught in a tug-of-war between lipophilicity, ensured by the presence of aromatic rings and needed to pass cell membranes, and hydrophilicity, granted by charged groups and necessary for stability in aqueous media.
Collapse
Affiliation(s)
- Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
- Correspondence: ; Tel.: +39-075-585-5590
| | - Carmela Bonaccorso
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.B.); (C.G.F.)
| | - Valentina Botti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Cosimo Gianluca Fortuna
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.B.); (C.G.F.)
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| |
Collapse
|
3
|
Acid-base strength and acido(fluoro)chromism of three push-pull derivatives of 2,6-distyrylpyridine. Photochem Photobiol Sci 2022; 21:935-947. [PMID: 35229276 DOI: 10.1007/s43630-022-00184-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
The acidochromism and acid-base properties of 2,6-distyrylpyridine (2,6-DStP) derivatives bearing on the sides push/pull substituents (namely two dimethylamino, one nitro, and one methoxy and two nitro groups in the case of 2,6-bis[(E)-2-(4-dimetylaminophenyl)ethenyl]pyridine, 2-[(E)-2-(4-nitrophenyl)ethenyl],6-[(E)-2'-(4'-methoxyphenyl)ethenyl]pyridine and 2,6-bis[(E)-2-(4-nitrophenyl)ethenyl]pyridine, respectively) were investigated by stationary and time-resolved spectroscopies. The sensitivity of the absorption and emission spectrum to the medium acidity was found to enhance in the dimethylamino-derivative relative to the unsubstituted 2,6-DStP, also because of the second protonation by the N(CH3)2 group. Spectrophotometric titrations, also processed by a global fitting approach, gave pKa values, for the protonation of the central pyridine, higher in the derivatives with electron-donor unities and lower in compounds bearing electron-acceptor groups. A fluorometric titration was performed in the case of the dimethylamino-derivative thanks to non-negligible emission efficiencies for both neutral and protonated species, unveiling an attractive naked-eye acido(fluoro)chromism from green to yellow upon pyridine protonation, and then to purple with the second protonation involving the lateral N(CH3)2 substituent. Due to the extremely short excited-state lifetimes, as resulted from femtosecond transient absorption experiments, the pKa values for the excited state (pKa*) were estimated through the Förster cycle, revealing that the monoprotonated species of the dimethylamino-derivative would become upon excitation the only stable form in a wide range of pH.
Collapse
|
4
|
Sun K, Pigot C, Zhang Y, Borjigin T, Morlet‐Savary F, Graff B, Nechab M, Xiao P, Dumur F, Lalevée J. Sunlight Induced Polymerization Photoinitiated by Novel Push–Pull Dyes: Indane‐1,3‐Dione, 1H‐Cyclopenta[b]Naphthalene‐1,3(2H)‐Dione and 4‐Dimethoxyphenyl‐1‐Allylidene Derivatives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ke Sun
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Corentin Pigot
- Aix Marseille Univ CNRS ICR UMR 7273 Marseille F‐13397 France
| | - Yijun Zhang
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Timur Borjigin
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Fabrice Morlet‐Savary
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Bernadette Graff
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Malek Nechab
- Aix Marseille Univ CNRS ICR UMR 7273 Marseille F‐13397 France
| | - Pu Xiao
- Research School of Chemistry Australian National University Canberra Australian Capital Territory 2601 Australia
| | - Frédéric Dumur
- Aix Marseille Univ CNRS ICR UMR 7273 Marseille F‐13397 France
| | - Jacques Lalevée
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| |
Collapse
|
5
|
Cesaretti A, Spalletti A, Elisei F, Foggi P, Germani R, Fortuna CG, Carlotti B. The role of twisting in driving excited-state symmetry breaking and enhanced two-photon absorption in quadrupolar cationic pyridinium derivatives. Phys Chem Chem Phys 2021; 23:16739-16753. [PMID: 34318828 DOI: 10.1039/d1cp01888d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two symmetric quadrupolar cationic push-pull compounds with a central electron-acceptor (N+-methylpyrydinium, A+) and different lateral electron-donors, (N,N-dimethylamino and N,N-diphenylamino, D) in a D-π-A+-π-D arrangement, were investigated together with their dipolar counterparts (D-π-A+) for their excited-state dynamics and NLO properties. As for the quadrupolar compounds, attention was focused on excited-state symmetry breaking (ESSB), which leads to a relaxed dipolar excited state. Both electron charge displacements and structural rearrangements were recognized in the excited-state dynamics of these molecules by resorting to femtosecond-resolved broadband fluorescence up-conversion experiments and advanced data analysis, used as a valuable alternative approach for fluorescent molecules compared to time-resolved IR spectroscopy, only suitable for compounds bearing IR markers. Specifically, intramolecular charge transfer (ICT) was found to be guided by ultrafast inertial solvation, while diffusive solvation can drive the twisting of lateral groups to originate twisted-ICT (TICT) states on a picosecond time scale. Yet still, only the bis-N,N-diphenylamino-substituted compound undergoes ESSB, in both highly and sparingly polar solvents, provided that it can experience large amplitude motions to a fully symmetry-broken TICT state. Besides well-known solvation effects, this structural requirement proved to be a necessary condition for these quadrupolar cations to undergo ESSB. In fact, a more efficient uncoupling between the out-of-plane D and A+ groups in the TICT state allows a greater stabilization gained through solvation, relative to the bis-N,N-dimethylamino-substituted derivative, which instead maintains its symmetry. This different behavior parallels the two-photon absorption (TPA) ability, which is greatly enhanced in the case of the bis-N,N-diphenylamino-substituted compound, paving the way for cutting-edge bio-imaging applications.
Collapse
Affiliation(s)
- Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN) University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Sun K, Xiao P, Dumur F, Lalevée J. Organic dye‐based photoinitiating systems for visible‐light‐induced photopolymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Sun
- Université de Haute‐Alsace, CNRS IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Pu Xiao
- Research School of Chemistry Australian National University Canberra Australian Capital Territory Australia
| | - Frédéric Dumur
- Aix Marseille University, CNRS ICR UMR 7273 Marseille France
| | - Jacques Lalevée
- Université de Haute‐Alsace, CNRS IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| |
Collapse
|
7
|
Sun K, Chen H, Zhang Y, Morlet-Savary F, Graff B, Xiao P, Dumur F, Lalevée J. High-performance sunlight induced polymerization using novel push-pull dyes with high light absorption properties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Sun K, Liu S, Chen H, Morlet-Savary F, Graff B, Pigot C, Nechab M, Xiao P, Dumur F, Lalevée J. N-ethyl carbazole-1-allylidene-based push-pull dyes as efficient light harvesting photoinitiators for sunlight induced polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Novel Push–Pull Dyes Derived from 1H-cyclopenta[b]naphthalene-1,3(2H)-dione as Versatile Photoinitiators for Photopolymerization and Their Related Applications: 3D Printing and Fabrication of Photocomposites. Catalysts 2020. [DOI: 10.3390/catal10101196] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A series of eleven push–pull chromophores with specific structures have been designed for the free radical polymerization of acrylates, but also for the fabrication of photocomposites and 3D-printed structures. New photoinitiating systems comprising the different push–pull dyes showed excellent photochemical reactivities at 405 nm. Notably, polymerization reactions could be initiated with light-emitting diodes (LEDs) which constitute a unique opportunity to promote the free radical polymerization under mild conditions, i.e., low light intensity (e.g., sunlight) and under air. Photopolymerization is an active research field, and push–pull dyes have already been investigated for this purpose. Besides, it remains of crucial interest to investigate new reactive structures capable of efficiently initiating photopolymerization reactions. The plausible potential of these structures to act as efficient photoinitiators in vat photopolymerization (or 3D printing) and fabrication of photocomposites prompts us to select eleven new push–pull dyes to design multi-component photoinitiating systems activable with LEDs emitting at 405 nm. Precisely, a tertiary amine, i.e., ethyl dimethylaminobenzoate (EDB) used as an electron/hydrogen donor and an iodonium salt used as an electron acceptor were selected to behave as powerful co-initiators to construct three-component photoinitiating systems (PISs) with the different push–pull dyes. Among these new PISs, dye 8 and 9-based PISs could efficiently promote the free radical photopolymerization of acrylates upon exposure to a LED emitting at 405 nm also upon sunlight irradiation, highlighting their huge performance. Photoinitiating abilities could be explained on the basis of steady state photolysis experiments. Fluorescence measurements and electron spin resonance (ESR) spin-trapping experiments were also performed to obtain a deeper insight into the chemical mechanisms supporting the polymerization reaction and determine the way the initiating species, i.e., the radicals, are observed. Finally, two investigated dye-based PISs were applied to the fabrications of photocomposites. Three-dimensional patterns with excellent spatial resolutions were generated by the laser writing technique to identify the effects of photopolymerization of acrylates both in the absence and presence of fillers (silica). Interestingly, comparison between the 3D objects fabricated by the PISs/monomer systems and the PISs/monomer/filler photocomposites indicates that the newly designed photocomposites are suitable for practical applications.
Collapse
|
10
|
Bonaccorso C, Naletova I, Satriano C, Spampinato G, Barresi V, Fortuna CG. New Di(heteroaryl)ethenes as Apoptotic Anti‐proliferative Agents Towards Breast Cancer: Design, One‐Pot Synthesis and In Vitro Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.201903502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Carmela Bonaccorso
- Laboratorio di Modellistica Molecolare e dei Composti Eterociclici (ModHet) Dipartimento di Scienze Chimiche Università degli Studi di Catania Viale A. Doria 6 95125 Catania Italy
| | - Irina Naletova
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) Via Celso Ulpiani, 27 70126 Bari, Italy
| | - Cristina Satriano
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) Via Celso Ulpiani, 27 70126 Bari, Italy
- Laboratorio di NanobioInterfacce Ibride (NHIL) Dipartimento di Scienze Chimiche Università degli Studi di Catania Viale A. Doria 6 95125 Catania Italy
| | - Giorgia Spampinato
- Bio-nanotech Research and Innovation Tower (BRIT) Università degli Studi di Catania dsuakgbdshkj 95125 Catania Italy
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica Università degli Studi di Catania via S. Sofia 64 I-95125 Catania Italy
| | - Vincenza Barresi
- Bio-nanotech Research and Innovation Tower (BRIT) Università degli Studi di Catania dsuakgbdshkj 95125 Catania Italy
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica Università degli Studi di Catania via S. Sofia 64 I-95125 Catania Italy
| | - Cosimo G. Fortuna
- Laboratorio di Modellistica Molecolare e dei Composti Eterociclici (ModHet) Dipartimento di Scienze Chimiche Università degli Studi di Catania Viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
11
|
Abegão LMG, Santos FA, Fonseca RD, Barreiros ALBS, Barreiros ML, Alves PB, Costa EV, Souza GB, Alencar MARC, Mendonça CR, Kamada K, De Boni L, Rodrigues JJ. Chalcone-based molecules: Experimental and theoretical studies on the two-photon absorption and molecular first hyperpolarizability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117772. [PMID: 31707018 DOI: 10.1016/j.saa.2019.117772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/05/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Five chalcone-based molecules denominated by C-3 ((E)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one), C-4 ((E)-1,3-bis(4-methoxyphenyl)prop-2-en-1-one), C-5 ((E)-1-(benzo[d][1,3]dioxol-5-yl)-3-(4-methoxyphenyl)prop-2-en-1-one), C-6 ((E)-3-(naphthalen-1-yl)-1-phenylprop-2-en-1-one) and C-7 ((E)-1-(4-methoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one) were synthesized by Claisen-Schmidt reaction in solution of NaOH in water/ethanol 2:1. The aldehydes used were benzaldehyde, anisaldehyde, and β-naphthaldehyde, while the used ketones were acetophenone, p-methoxyacetophenone, and 3,4-methylenedioxyacetophenone. Z-scan and hyper-Rayleigh scattering techniques were used to study the nonlinear optical properties of these compounds in dichloromethane medium. By using Z-scan technique with femtosecond pulses, two-photon absorption cross-sections (σTPA) were determined, while the first molecular electronic hyperpolarizabilities (βHRS) were evaluated by the hyper-Rayleigh scattering technique, with picosecond pulses. From the recorded two-photon absorption spectra, it was identified that compound C-7 presented the highest σTPA, regarding the HOMO-LUMO transition, with a value of 40 GM, while C-6 achieved the lowest value for the same transition with 13 GM. Concerning the values of the first molecular hyperpolarizability, compound C-4 presented the highest value, 38 × 10-30 cm4 statvolt-1, while C-3 presented the lowest βHRS value of about 16 × 10-30 cm4 statvolt-1. Time-dependent density functional theory calculations were used to simulate the one- and two-photon absorption spectra, as well to predict the theoretical value of βHRS in dichloromethane and vacuum medium.
Collapse
Affiliation(s)
- Luis M G Abegão
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil; Department of Radiology & Biomedical Imaging, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT 06520, USA.
| | - Francisco A Santos
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - Ruben D Fonseca
- Universidad Popular del Cesar, Departamento de Fisica, Barrio Sabana, 2000004 Valledupar, Cesar, Colombia; Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - André L B S Barreiros
- Departamento de Química, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - Marizeth L Barreiros
- Departamento de Química, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - Péricles B Alves
- Departamento de Química, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - Emmanoel V Costa
- Departamento de Química, Universidade Federal do Amazonas, 69077-000 Manaus, AM, Brazil
| | - Gabriella B Souza
- Departamento de Química, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - Márcio A R C Alencar
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - Cleber R Mendonça
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Kenji Kamada
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
| | - Leonardo De Boni
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - José Joatan Rodrigues
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil
| |
Collapse
|