1
|
Liu C, Wu P. A durable hydrophobic photothermal membrane based on a honeycomb structure MXene for stable and efficient solar desalination. RSC Adv 2024; 14:10370-10377. [PMID: 38567343 PMCID: PMC10985539 DOI: 10.1039/d3ra08157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Solar powered water evaporation is a green and environmentally friendly water treatment technology, which is a hot research topic for water purification at present. Advanced structural design and hydrophilic photothermal materials have achieved efficient solar evaporation of pure water, but the long-term stability of high salinity desalination has become a problem that cannot be ignored in practical applications. In order to solve this problem, a hydrophobic honeycomb structure MXene/AuNFs composite membrane was proposed in this paper, which used the three-dimensional highly porous microstructure of MXene and multibranched structure of gold nanoflowers particles to improve the light absorption and photothermal conversion efficiency of MXene/AuNFs. At the same time, the surface of the composite membrane was modified with hydrophobic fluorosilane 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFTE). The hydrophobic layer can prevent the accumulation of salt particles on the surface of the membrane, so that the composite film can continue to produce water vapor in a high salt environment. With high utilization rate of light energy, multiple-level geometrical structures of MXene for rapid water transport on the filter membrane and salt barrier on the membrane good stability, the hydrophobic MXene/AuNFs achieves solar evaporation rate of 1.59 kg m-2 h-1 and solar conversion efficiency is 97.8%, and stable operation under simulated sea water conditions under one sun irradiation over more than 10 cycles. The hydrophobic MXene/AuNFs membrane proved to be an efficient and stable photothermal material for solar desalination.
Collapse
Affiliation(s)
- Chunjiao Liu
- Xinyang Vocational and Technical College Xinyang Henan 464000 China
| | - Peng Wu
- Xinyang Vocational and Technical College Xinyang Henan 464000 China
| |
Collapse
|
2
|
Dalal S, Sadhu KK. Fluorogenic response from DNA templated micrometer range self-assembled gold nanorod. J Mater Chem B 2023; 11:9019-9026. [PMID: 37721049 DOI: 10.1039/d3tb01446k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Plasmonic gold nanorod (AuNR) on a macromolecular matrix exhibits an end-to-end (ETE) long-range self-assembly (AuNR)n with n > 100. In the case of small molecules as a template, the pre-synthesized macromolecular matrix is missing and this brings a synthetic challenge in directed long-range assembly of AuNR. Self-assembly with thiol-modified small DNA and AuNR shows a much short-range ETE assembly with n < 25 via a simple evaporation technique on a solid surface. In this study, the introduction of two short amine modified probe DNAs (∼2.5 nm) and one 22-mer complementary single strand (ss)-DNA template (∼7 nm) show the long-range ETE self-assembly of (AuNR)n with n > 130. In the solution state, the zigzag arrangement within the assembled structure controls the typical change in the absorption behavior for (AuNR)n ETE assembly. The formation of this long-range ETE self-assembly in a solution state was verified from the combined effect of fluorescence resonance energy transfer (FRET) and hotspot-induced fluorescence enhancement. The probe DNAs and templated DNA concentration on fluorescence enhancement have been varied to monitor the effect of (AuNR)n with n = ∼5-130 in ETE self-assembly. Primarily quenched FRET acceptor in the presence of AuNR decisively exhibits remarkable fluorogenic response in ETE self-assembly with maximum n value. Although the FRET efficiencies among the fluorophores are comparable, the fluorogenic boost in ETE AuNR is due to the increased number of intrinsic navigated hotspots in these assemblies.
Collapse
Affiliation(s)
- Sancharika Dalal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India.
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India.
| |
Collapse
|
3
|
Wang H, Wang D, Huangfu H, Chen S, Qin Q, Ren S, Zhang Y, Fu L, Zhou Y. Highly efficient photothermal branched Au-Ag nanoparticles containing procyanidins for synergistic antibacterial and anti-inflammatory immunotherapy. Biomater Sci 2023; 11:1335-1349. [PMID: 36594408 DOI: 10.1039/d2bm01212j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Periodontitis is an inflammatory disease caused by bacterial infection. Excessive immune response and high levels of reactive oxygen species (ROS) further lead to the irreversible destruction of surrounding tissues. Developing new antimicrobial materials that regulate the immune system to resist inflammation can effectively treat periodontal inflammation. A nanoplatform integrating Ag+, photothermal therapy (PTT), and procyanidins (PC) for precision antibacterial and synergistic immunotherapy for periodontitis was proposed. This work loaded PC into AuAg nanoparticles, and the resulting nanocomposite was named AuAg-PC. PTT can effectively remove pathogenic bacteria, but high temperatures can cause tissue damage. Ag+ contributes to the preparation of a nanoparticle branched structure that improves the photothermal efficiency and helps PTT achieve an excellent antibacterial effect and avoid periodontal tissue damage. PC regulates host immunity by eliminating intracellular ROS, inhibiting inflammatory factors, and regulating macrophage polarisation in periodontal disease sites. It enhances the host's resistance to bacterial inflammation. AuAg-PC exerted an excellent anti-inflammatory effect and promoted tissue repair in animal periodontal inflammation models. Hence, AuAg-PC significantly combats periodontal pathogens and shows great application potential in the photothermal-assisted immunotherapy of periodontitis. This design provided a new controllable and efficient treatment platform for controlling persistent inflammation infection and regulating immunity.
Collapse
Affiliation(s)
- Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Huimin Huangfu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Siyu Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Qiuyue Qin
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Sicong Ren
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Li Fu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
4
|
Jeong JH, Pradyast A, Shim H, Woo HC, Kim MH. Completely green synthesis of rose-shaped Au nanostructures and their catalytic applications. RSC Adv 2021; 11:34589-34598. [PMID: 35494773 PMCID: PMC9042714 DOI: 10.1039/d1ra06805a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
A novel protocol for the one-pot, template/seed-free, and completely green synthesis of rose-shaped Au nanostructures with unique three-dimensional hierarchical structures was developed.
Collapse
Affiliation(s)
- Jae Hwan Jeong
- Department of Polymer Engineering, Pukyong National Univeristy, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Astrini Pradyast
- Department of Polymer Engineering, Pukyong National Univeristy, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Hyeonbo Shim
- Department of Polymer Engineering, Pukyong National Univeristy, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National Univeristy, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Lone SA, Sadhu KK. Gold Nanoflower for Selective Detection of Single Arginine Effect in α-Helix Conformational Change over Lysine in 310-Helix Peptide. Bioconjug Chem 2019; 30:1781-1787. [DOI: 10.1021/acs.bioconjchem.9b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shahbaz Ahmad Lone
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kalyan K. Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|