3
|
Jiménez J, Poncet M, Míguez‐Lago S, Grass S, Lacour J, Besnard C, Cuerva JM, Campaña AG, Piguet C. Bright Long‐Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew Chem Int Ed Engl 2021; 60:10095-10102. [DOI: 10.1002/anie.202101158] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Sandra Míguez‐Lago
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Stéphane Grass
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography University of Geneva quai E. Ansermet 24 1211 Geneva 4 Switzerland
| | - Juan M. Cuerva
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
4
|
Jiménez J, Poncet M, Míguez‐Lago S, Grass S, Lacour J, Besnard C, Cuerva JM, Campaña AG, Piguet C. Bright Long‐Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Sandra Míguez‐Lago
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Stéphane Grass
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography University of Geneva quai E. Ansermet 24 1211 Geneva 4 Switzerland
| | - Juan M. Cuerva
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
6
|
Hasegawa M, Sakurai S, Yamaguchi MA, Iwasawa D, Yajima N, Ogata S, Inazuka Y, Ishii A, Suzuki K. Aspects of lanthanide complexes for selectivity, intensity and sharpness in luminescence bands from twenty-four praseodymium, europium and gadolinium complexes with differently distorted-hexadentate ligands. Photochem Photobiol Sci 2020; 19:1054-1062. [PMID: 32609140 DOI: 10.1039/d0pp00069h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We structurally and spectroscopically investigated a series of praseodymium (Pr) complexes with eight ligands that form helicate molecular structures. The mother ligand skeleton (L) has two bipyridine moieties bridged with ethylenediamine. The bridged skeleton of PrL was changed to diamines 1-methyl-ethylenediamine, trimethylenediamine and 2,2'-dimethyl-trimethylenediamine, and the corresponding ligands were designated as Lme, Lpr and Ldmpr, for each Pr in these complexes upon UV-excitation. The luminescence quantum yields of PrL and PrLpr in the visible and near infrared (NIR) regions indicate that PrL is excited by both the electronic state of the ligand and the ff absorption band, whereas PrLpr is excited through the ligand. The addition of a methyl group to PrL and PrLpr has a different effect on the Pr emission intensity with the intensity of PrLme decreasing more than that of PrL and PrLdmpr and increasing more than that of PrLpr. Thus, the coordination of Pr and the increased rigidity of the ligand upon methylation enhance luminescence. The azomethine moieties on Lme, Lpr and Ldmpr were reduced and formed the corresponding PrLH, PrLmeH, PrLprH and PrLdmprH complexes. The luminescence of the non-methylated series is due to transitions related to the 1D2 level and thus the methylated series luminesces due to high energy levels such as 3PJ arising from the shortened π electronic systems. We also discuss the strong red emission of a series of Eu complexes with eight ligands from the viewpoint of their molecular structures and luminescence efficiencies and evaluate the Judd-Ofelt parameters from the luminescence spectra of Eu complexes.
Collapse
Affiliation(s)
- Miki Hasegawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan. .,Mirai Molecular Materials Design Institute, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan.
| | - Shoya Sakurai
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Masafumi Andrew Yamaguchi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Daichi Iwasawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Naho Yajima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Shuhei Ogata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Yudai Inazuka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Ayumi Ishii
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, 5-10-1 Fuchinobe, 252-5258, Chuo-ku, Sagamihara, Kanagawa, Japan.,JST, PRESTO, 4-1-8 Moncho, 332-0012, Kawaguchi, Saitama, Japan.,Graduate School of Engineering, Toin University of Yokohama, 225-8503, Kurogane-cho, Aoba-ku, Yokohama, Kanagawa, Japan
| | - Kengo Suzuki
- Hamamatsu Photonics K. K, 812 Joko-cho, 341-3196, Higashi-ku, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
7
|
Affiliation(s)
- Miki Hasegawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Hitomi Ohmagari
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
8
|
Kondo Y, Suzuki S, Watanabe M, Kaneta A, Albertini P, Nagamori K. Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet Method. Front Chem 2020; 8:527. [PMID: 32656184 PMCID: PMC7325216 DOI: 10.3389/fchem.2020.00527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 12/03/2022] Open
Abstract
Circularly polarized luminescence (CPL) spectroscopy measures the difference in luminescence intensity between left- and right-circularly polarized light, and is often used to analyze the structure of chiral molecules in their excited state. Recently, it has found an increasing range of applications in the analysis of molecules that emit circularly polarized light and can be employed in 3D displays. Thus, the number of articles focusing on CPL spectroscopy has increased dramatically. However, since the luminescence dissymmetry factor (g lum) for organic compounds is generally <|0.01|, CPL spectrometers must offer high sensitivity and produce spectra that are artifact-free for chiral molecules. Until now, the principal targets of CPL measurements have been solution samples. However, for practical device applications, it is also necessary to be able to measure the CPL spectra of solid-state samples. In addition, since electronic devices often operate at high temperatures, it is important to evaluate the thermal dependence of the CPL characteristics. Moreover, in the measurement of solid-state samples, the degree of anisotropy of the samples must be evaluated, because a large degree of anisotropy can cause artifacts. Therefore, we describe methods to evaluate the degree of anisotropy of solid-state samples and their high-temperature applications.
Collapse
|