1
|
Kariminia S, Shamsipur M, Mansouri K. A novel magnetically guided, oxygen propelled CoPt/Au nanosheet motor in conjugation with a multilayer hollow microcapsule for effective drug delivery and light triggered drug release. J Mater Chem B 2023; 12:176-186. [PMID: 38055010 DOI: 10.1039/d3tb01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In recent years, nanomotors have been developed and attracted extensive attention in biomedical applications. In this work, a magnetically-guided oxygen-propelled CoPt/gold nanosheet motor (NSM) was prepared and used as an active self-propelled platform that can load, transfer and control the release of drug carrier to cancer cells. As a drug carrier, the microcapsules were constructed by the layer-by-layer (LbL) coating of chitosan and carboxymethyl cellulose layers, followed by incorporation of gold and magnetite nanoparticles. Doxorubicin (DOX) as an anti-cancer drug was loaded onto the synthesized microcapsules with a loading efficiency of 77%. The prepared NSMs can deliver the DOX loaded magnetic multilayer microcapsule to the target cancer cell based on the catalytic decomposition of H2O2 solution (1% v/v) via guidance from an external magnetic force. The velocity of NSM was determined to be 25.1 μm s-1 in 1% H2O2. Under near-infrared irradiation, and due to the photothermal effect of the gold nanoparticles, the proposed system was found to rapidly release more drugs compared to that of an internal stimulus diffusion process. Moreover, the investigation of cytotoxicity of NSMs and multilayer microcapsules clearly revealed that they have negligible side effects over all the concentrations tested.
Collapse
Affiliation(s)
| | | | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Naeem S, Naeem F, Mujtaba J, Shukla AK, Mitra S, Huang G, Gulina L, Rudakovskaya P, Cui J, Tolstoy V, Gorin D, Mei Y, Solovev AA, Dey KK. Oxygen Generation Using Catalytic Nano/Micromotors. MICROMACHINES 2021; 12:1251. [PMID: 34683302 PMCID: PMC8541545 DOI: 10.3390/mi12101251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Gaseous oxygen plays a vital role in driving the metabolism of living organisms and has multiple agricultural, medical, and technological applications. Different methods have been discovered to produce oxygen, including plants, oxygen concentrators and catalytic reactions. However, many such approaches are relatively expensive, involve challenges, complexities in post-production processes or generate undesired reaction products. Catalytic oxygen generation using hydrogen peroxide is one of the simplest and cleanest methods to produce oxygen in the required quantities. Chemically powered micro/nanomotors, capable of self-propulsion in liquid media, offer convenient and economic platforms for on-the-fly generation of gaseous oxygen on demand. Micromotors have opened up opportunities for controlled oxygen generation and transport under complex conditions, critical medical diagnostics and therapy. Mobile oxygen micro-carriers help better understand the energy transduction efficiencies of micro/nanoscopic active matter by careful selection of catalytic materials, fuel compositions and concentrations, catalyst surface curvatures and catalytic particle size, which opens avenues for controllable oxygen release on the level of a single catalytic microreactor. This review discusses various micro/nanomotor systems capable of functioning as mobile oxygen generators while highlighting their features, efficiencies and application potentials in different fields.
Collapse
Affiliation(s)
- Sumayyah Naeem
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Farah Naeem
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Ashish Kumar Shukla
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| | - Shirsendu Mitra
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Larisa Gulina
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, 198504 St. Petersburg, Russia; (L.G.); (V.T.)
| | - Polina Rudakovskaya
- Center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia; (P.R.); (D.G.)
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Valeri Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, 198504 St. Petersburg, Russia; (L.G.); (V.T.)
| | - Dmitry Gorin
- Center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia; (P.R.); (D.G.)
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Alexander A. Solovev
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Krishna Kanti Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| |
Collapse
|