1
|
Zenchenko AA, Drenichev MS, Khvatov EV, Uvarova VI, Goryashchenko AS, Frolenko VS, Karpova EV, Kozlovskaya LI, Osolodkin DI, Ishmukhametov AA, Mikhailov SN, Oslovsky VE. Elongation of N 6-benzyladenosine scaffold via Pd-catalyzed C-C bond formation leads to derivatives with antiflaviviral activity. Bioorg Med Chem 2024; 98:117552. [PMID: 38128296 DOI: 10.1016/j.bmc.2023.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Decoration of nucleoside analogues with lipophilic groups often leads to compounds with improved antiviral activity. For example, N6-benzyladenosine derivatives containing elongated lipophilic substituents in the benzyl core efficiently inhibit reproduction of tick-borne encephalitis virus (TBEV), while N6-benzyladenosine itself potently inhibits reproduction of human enterovirus A71 (EV-A71). We have extended a series of N6-benzyladenosine analogues using effective synthetic methods of CC bond formation based on Pd-catalyzed cross-coupling reactions (Sonogashira and Suzuki) in order to study the influence of bulky lipophilic substituents in the N6 position of adenosine on the antiviral activity against flaviviruses, such as TBEV, yellow fever virus (YFV) and West Nile virus (WNV), as well as a panel of enteroviruses including EV-A71, Echovirus 30 (E30), and poliovirus type 2 (PV2). Reproduction of tested flaviviruses appeared to be inhibited by the micromolar concentrations of the compounds, while cytotoxicity in most cases was beyond the detection limit. Time-of-addition studies demonstrated that the hit compounds inhibited the stage of viral RNA synthesis, but not the stages of the viral entry or protein translation. As a result, several new promising antiflaviviral leads have been identified. On the other hand, none of the synthesized compounds inhibited enterovirus reproduction, indicating a possibility of involvement of flavivirus-specific pathways in their mechanism of action.
Collapse
Affiliation(s)
| | | | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | | | - Vasilisa S Frolenko
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Evgenia V Karpova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | | |
Collapse
|
2
|
The Lipophilic Purine Nucleoside-Tdp1 Inhibitor-Enhances DNA Damage Induced by Topotecan In Vitro and Potentiates the Antitumor Effect of Topotecan In Vivo. Molecules 2022; 28:molecules28010323. [PMID: 36615517 PMCID: PMC9822400 DOI: 10.3390/molecules28010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, such as topotecan (Tpc). Tdp1 eliminates covalent Top1-DNA (Top1c) complexes that appear under the action of topotecan and determines the cytotoxic effect of this drug. We hypothesize that Tdp1 inhibition would sensitize cells towards the effect of Tpc. Herein, we report the synthesis and study of lipophilic derivatives of purine nucleosides that efficiently suppress Tdp1 activity, with IC50 values in the 0.3-22.0 μM range. We also showed that this compound class can enhance DNA damage induced by topotecan in vitro by Comet assay on human cell lines HeLa and potentiate the antitumor effect of topotecan in vivo on a mice ascitic Krebs-2 carcinoma model. Thereby, this type of compound may be useful to develop drugs, that sensitize the effect of topotecan and reduce the required dose and, as a result, side effects.
Collapse
|
3
|
Distinct Peculiarities of In Planta Synthesis of Isoprenoid and Aromatic Cytokinins. Biomolecules 2020; 10:biom10010086. [PMID: 31948077 PMCID: PMC7022850 DOI: 10.3390/biom10010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022] Open
Abstract
The biosynthesis of aromatic cytokinins in planta, unlike isoprenoid cytokinins, is still unknown. To compare the final steps of biosynthesis pathways of aromatic and isoprenoid cytokinins, we synthesized a series of nucleoside derivatives of natural cytokinins starting from acyl-protected ribofuranosyl-, 2'-deoxyribofuranosyl- and 5'-deoxyribofuranosyladenine derivatives using stereoselective alkylation with further deblocking. Their cytokinin activity was determined in two bioassays based on model plants Arabidopsis thaliana and Amaranthus caudatus. Unlike cytokinins, cytokinin nucleosides lack the hormonal activity until the ribose moiety is removed. According to our experiments, ribo-, 2'-deoxyribo- and 5'-deoxyribo-derivatives of isoprenoid cytokinin N6-isopentenyladenine turned in planta into active cytokinins with clear hormonal activity. As for aromatic cytokinins, both 2'-deoxyribo- and 5'-deoxyribo-derivatives did not exhibit analogous activity in Arabidopsis. The 5'-deoxyribo-derivatives cannot be phosphorylated enzymatically in vivo; therefore, they cannot be "activated" by the direct LOG-mediated cleavage, largely occurring with cytokinin ribonucleotides in plant cells. The contrasting effects exerted by deoxyribonucleosides of isoprenoid (true hormonal activity) and aromatic (almost no activity) cytokinins indicates a significant difference in the biosynthesis of these compounds.
Collapse
|
4
|
Oslovsky VE, Drenichev MS, Alexeev CS, Solyev PN, Esipov RS, Mikhailov SN. Synthesis of Cytokinins via Enzymatic Arsenolysis of Purine Nucleosides. ACTA ACUST UNITED AC 2018; 75:e61. [DOI: 10.1002/cpnc.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Cyril S. Alexeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Roman S. Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow Russia
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| |
Collapse
|