1
|
Kim M, Hong WC, Kang HW, Kim JH, Lee D, Cheong JH, Jung HS, Kwon W, Jang JY, Kim HJ, Park JS. SLC5A3 depletion promotes apoptosis by inducing mitochondrial dysfunction and mitophagy in gemcitabine-resistant pancreatic cancer cells. Cell Death Dis 2025; 16:161. [PMID: 40055335 PMCID: PMC11889219 DOI: 10.1038/s41419-025-07476-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis, largely due to the rapid development of chemoresistance in patients. Mitochondrial dynamics play a crucial role in cancer cell survival. Currently, the specific mechanisms underlying gemcitabine resistance in PDAC remain unknown. In this study, we identified the sodium/myo-inositol co-transporter solute carrier family 5 member 3 (SLC5A3) as a key modulator promoting chemoresistance in PDAC. SLC5A3 levels were significantly upregulated in gemcitabine-resistant PDAC cells, enhancing their cell survival by stabilizing the mitochondrial functions and inhibiting apoptosis. Mitochondrial analysis showed that SLC5A3 inhibition disrupted the mitochondrial dynamics, leading to increased reactive oxygen species production, mitochondrial fission, and impaired oxidative phosphorylation. Moreover, SLC5A3 inhibition activated the PTEN-induced kinase 1/Parkin-mediated mitophagy pathway, resulting in the excessive removal of damaged and healthy mitochondria, thereby depleting the mitochondrial reserves and sensitizing the cells to apoptosis. In vivo studies revealed that targeting SLC5A3 enhanced the efficacy of gemcitabine and significantly reduced the tumor growth. Collectively, these results suggest SLC5A3-mediated mitochondrial regulation as a promising therapeutic strategy to overcome gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Minsoo Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Woosol Chris Hong
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Woong Kang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongyong Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Joon Seong Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zupin L, Whitford AL, Cliffe AR, Crovella S, Barbi E, Celsi F. Near-infrared photobiomodulation therapy on HD10.6 human sensory neurons cell culture. Lasers Med Sci 2025; 40:71. [PMID: 39913028 DOI: 10.1007/s10103-024-04266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
PURPOSE We investigated the molecular effects of near-infrared photobiomodulation therapy (PBMT) on HD10.6 human sensory neuron cell cultures. This study explores the utility of PBMT in modulating the functionality of sensory neurons in vitro with a potential translational effect on analgesia, a significant concern in clinical settings, particularly in pediatrics where non-invasive treatments are crucial. METHODS HD10.6 human sensory neuron cell model was employed in the study. The 800 and 970 PBMT was tested on the cells and mitochondria related parameters and TRP channel functionality were evaluated after irradiation. RESULTS We found that PBMT affects mitochondrial dynamics and reduces oxidative stress, influenced calcium ion flow, pivotal in nociception signaling, and modified the expression of TRPV1 and TRPA1 receptors post-irradiation. CONCLUSIONS This study observed a potential impact of PBMT on sensory neurons through various cellular mechanisms. These findings may contribute to the understanding of PBMT's mechanistic effects on human sensory neurons, not yet explored in in-vitro model, pointing to its potential utility as a supportive treatment for non-invasive pain management in pediatric care.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy.
| | - Abigail L Whitford
- Department of Microbiology Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R Cliffe
- Department of Microbiology Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Egidio Barbi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
- Department of MedicineSurgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
3
|
Gonzales CR, Moca EN, Chandra PK, Busija DW, Rutkai I. Three-dimensional object geometry of mitochondria-associated signal: 3-D analysis pipeline for two-photon image stacks of cerebrovascular endothelial mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H1291-H1303. [PMID: 38517228 PMCID: PMC11630827 DOI: 10.1152/ajpheart.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Increasing evidence indicates the role of mitochondrial and vascular dysfunction in aging and aging-associated pathologies; however, the exact mechanisms and chronological processes remain enigmatic. High-energy demand organs, such as the brain, depend on the health of their mitochondria and vasculature for the maintenance of normal functions, therefore representing vulnerable targets for aging. This methodology article describes an analysis pipeline for three-dimensional (3-D) mitochondria-associated signal geometry of two-photon image stacks of brain vasculature. The analysis methods allow the quantification of mitochondria-associated signals obtained in real time in their physiological environment. In addition, signal geometry results will allow the extrapolation of fission and fusion events under normal conditions, during aging, or in the presence of different pathological conditions, therefore contributing to our understanding of the role mitochondria play in a variety of aging-associated diseases with vascular etiology.NEW & NOTEWORTHY Analysis pipeline for 3-D mitochondria-associated signal geometry of two-photon image stacks of brain vasculature.
Collapse
Affiliation(s)
- Christopher R Gonzales
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Eric N Moca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Floudas A, Smith CM, Tynan O, Neto N, Krishna V, Wade SM, Hanlon M, Cunningham C, Marzaioli V, Canavan M, Fletcher JM, Mullan RH, Cole S, Hao LY, Monaghan MG, Nagpal S, Veale DJ, Fearon U. Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis. Ann Rheum Dis 2022; 81:1224-1242. [PMID: 35701153 DOI: 10.1136/annrheumdis-2021-221761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Immune and stromal cell communication is central in the pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), however, the nature of these interactions in the synovial pathology of the two pathotypes can differ. Identifying immune-stromal cell crosstalk at the site of inflammation in RA and PsA is challenging. This study creates the first global transcriptomic analysis of the RA and PsA inflamed joint and investigates immune-stromal cell interactions in the pathogenesis of synovial inflammation. METHODS Single cell transcriptomic profiling of 178 000 synovial tissue cells from five patients with PsA and four patients with RA, importantly, without prior sorting of immune and stromal cells. This approach enabled the transcriptomic analysis of the intact synovial tissue and identification of immune and stromal cell interactions. State of the art data integration and annotation techniques identified and characterised 18 stromal and 14 immune cell clusters. RESULTS Global transcriptomic analysis of synovial cell subsets identifies actively proliferating synovial T cells and indicates that due to differential λ and κ immunoglobulin light chain usage, synovial plasma cells are potentially not derived from the local memory B cell pool. Importantly, we report distinct fibroblast and endothelial cell transcriptomes indicating abundant subpopulations in RA and PsA characterised by differential transcription factor usage. Using receptor-ligand interactions and downstream target characterisation, we identify RA-specific synovial T cell-derived transforming growth factor (TGF)-β and macrophage interleukin (IL)-1β synergy in driving the transcriptional profile of FAPα+THY1+ invasive synovial fibroblasts, expanded in RA compared with PsA. In vitro characterisation of patient with RA synovial fibroblasts showed metabolic switch to glycolysis, increased adhesion intercellular adhesion molecules 1 expression and IL-6 secretion in response to combined TGF-β and IL-1β treatment. Disrupting specific immune and stromal cell interactions offers novel opportunities for targeted therapeutic intervention in RA and PsA.
Collapse
Affiliation(s)
- Achilleas Floudas
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Conor M Smith
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Tynan
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Vinod Krishna
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Sarah M Wade
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Megan Hanlon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Clare Cunningham
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Viviana Marzaioli
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ronan H Mullan
- Department of Rheumatology, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Suzanne Cole
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Ling-Yang Hao
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Sunil Nagpal
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Douglas J Veale
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| |
Collapse
|