1
|
Portilla Llerena JP, Kiyota E, dos Santos FRC, Garcia JC, de Lima RF, Mayer JLS, dos Santos Brito M, Mazzafera P, Creste S, Nobile PM. ShF5H1 overexpression increases syringyl lignin and improves saccharification in sugarcane leaves. GM CROPS & FOOD 2024; 15:67-84. [PMID: 38507337 PMCID: PMC10956634 DOI: 10.1080/21645698.2024.2325181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Eduardo Kiyota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Julio C. Garcia
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
| | | | | | - Michael dos Santos Brito
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Silvana Creste
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
2
|
Levengood H, Zhou Y, Zhang C. Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species. PLANT CELL REPORTS 2024; 43:273. [PMID: 39467894 DOI: 10.1007/s00299-024-03359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
The ability to efficiently genetically modify plant species is crucial, driving the need for innovative technologies in plant biotechnology. Existing plant genetic transformation systems include Agrobacterium-mediated transformation, biolistics, protoplast-based methods, and nanoparticle techniques. Despite these diverse methods, many species exhibit resistance to transformation, limiting the applicability of most published methods to specific species or genotypes. Tissue culture remains a significant barrier for most species, although other barriers exist. These include the infection and regeneration stages in Agrobacterium, cell death and genomic instability in biolistics, the creation and regeneration of protoplasts for protoplast-based methods, and the difficulty of achieving stable transformation with nanoparticles. To develop species-independent transformation methods, it is essential to address these transformation bottlenecks. This review examines recent advancements in plant biotechnology, highlighting both new and existing techniques that have improved the success rates of plant transformations. Additionally, several newly emerged plant model systems that have benefited from these technological advancements are also discussed.
Collapse
Affiliation(s)
- Hannah Levengood
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cankui Zhang
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Wang W, Javed T, Shen L, Sun T, Yang B, Zhang S. Establishment of an Efficient Sugarcane Transformation System via Herbicide-Resistant CP4-EPSPS Gene Selection. PLANTS (BASEL, SWITZERLAND) 2024; 13:852. [PMID: 38592870 PMCID: PMC10975096 DOI: 10.3390/plants13060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Sugarcane (Saccharum spp.), a major cash crop that is an important source of sugar and bioethanol, is strongly influenced by the impacts of biotic and abiotic stresses. The intricate polyploid and aneuploid genome of sugarcane has shown various limits for conventional breeding strategies. Nonetheless, biotechnological engineering currently offers the best chance of introducing commercially significant agronomic features. In this study, an efficient Agrobacterium-mediated transformation system that uses the herbicide-resistant CP4-EPSPS gene as a selection marker was developed. Notably, all of the plants that were identified by PCR as transformants showed significant herbicide resistance. Additionally, this transformation protocol also highlighted: (i) the high yield of transgenic lines from calli (each gram of calli generated six transgenic lines); (ii) improved selection; and (iii) a higher transformation efficiency. This protocol provides a reliable tool for a routine procedure for the generation of resilient sugarcane plants.
Collapse
Affiliation(s)
- Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 571763, China
| | - Talha Javed
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
| | - Linbo Shen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 571763, China
| |
Collapse
|
4
|
Ribeiro AP, Vinecky F, Duarte KE, Santiago TR, das Chagas Noqueli Casari RA, Hell AF, da Cunha BADB, Martins PK, da Cruz Centeno D, de Oliveira Molinari PA, de Almeida Cançado GM, Magalhães JVD, Kobayashi AK, de Souza WR, Molinari HBC. Enhanced aluminum tolerance in sugarcane: evaluation of SbMATE overexpression and genome-wide identification of ALMTs in Saccharum spp. BMC PLANT BIOLOGY 2021; 21:300. [PMID: 34187360 PMCID: PMC8240408 DOI: 10.1186/s12870-021-02975-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/14/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND A major limiting factor for plant growth is the aluminum (Al) toxicity in acidic soils, especially in tropical regions. The exclusion of Al from the root apex through root exudation of organic acids such as malate and citrate is one of the most ubiquitous tolerance mechanisms in the plant kingdom. Two families of anion channels that confer Al tolerance are well described in the literature, ALMT and MATE family. RESULTS In this study, sugarcane plants constitutively overexpressing the Sorghum bicolor MATE gene (SbMATE) showed improved tolerance to Al when compared to non-transgenic (NT) plants, characterized by sustained root growth and exclusion of aluminum from the root apex based on the result obtained with hematoxylin staining. In addition, genome-wide analysis of the recently released sugarcane genome identified 11 ALMT genes and molecular studies showed potential new targets for aluminum tolerance. CONCLUSIONS Our results indicate that the transgenic plants overexpressing the Sorghum bicolor MATE has an improved tolerance to Al. The expression profile of ALMT genes revels potential candidate genes to be used has an alternative for agricultural expansion in Brazil and other areas with aluminum toxicity in poor and acid soils.
Collapse
Affiliation(s)
- Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasilia, 70770-901, DF, Brazil
| | - Felipe Vinecky
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasilia, 70770-901, DF, Brazil
| | - Karoline Estefani Duarte
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasilia, 70770-901, DF, Brazil
- Centre of Natural Sciences and Humanities, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | - Thaís Ribeiro Santiago
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasilia, 70770-901, DF, Brazil
- Phytopathology Department, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | | | - Aline Forgatti Hell
- Centre of Natural Sciences and Humanities, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | | | - Polyana Kelly Martins
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasilia, 70770-901, DF, Brazil
| | - Danilo da Cruz Centeno
- Centre of Natural Sciences and Humanities, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | | | | | | | | | - Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasilia, 70770-901, DF, Brazil.
- Centre of Natural Sciences and Humanities, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil.
| | | |
Collapse
|
5
|
Iqbal A, Khan RS, Khan MA, Gul K, Jalil F, Shah DA, Rahman H, Ahmed T. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane. Mol Biotechnol 2021; 63:557-568. [PMID: 33893996 DOI: 10.1007/s12033-021-00328-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Sugarcane (Saccharum officinarum), a sugar crop commonly grown for sugar production all over the world, is susceptible to several insect pests attack in addition to bacterial, fungal and viral infections leading to substantial reductions in its yield. The complex genetic makeup and lack of resistant genes in genome of sugarcane have made the conventional breeding a difficult and challenging task for breeders. Using pesticides for control of the attacking insects can harm beneficial insects, human and other animals and the environment as well. As alternative and effective strategy for control of insect pests, genetic engineering has been applied for overexpression of cry proteins, vegetative insecticidal proteins (vip), lectins and proteinase inhibitors (PI). In addition, the latest biotechnological tools such as host-induced gene silencing (HIGS) and CRISPR/Cas9 can be employed for sustainable control of insect pests in sugarcane. In this review overexpression of the cry, vip, lectins and PI genes in transgenic sugarcane and their disease resistance potential is described.
Collapse
Affiliation(s)
- Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan.
| | - Mubarak Ali Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Karim Gul
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Daud Ali Shah
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Talaat Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Dessoky ES, Ismail RM, Elarabi NI, Abdelhadi AA, Abdallah NA. Improvement of sugarcane for borer resistance using Agrobacterium mediated transformation of cry1Ac gene. GM CROPS & FOOD 2021; 12:47-56. [PMID: 32862762 PMCID: PMC7595610 DOI: 10.1080/21645698.2020.1809318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The sugarcane (Saccharum X officinarum) is one of the most important crops used to produce sugar and raw material for biofuel in the world. One of the main causes for sucrose content and yield losses is the attack by insect. In this investigation, cry1Ac gene was introduced into sugarcane variety GT54-9(C9) using the Agrobacterium tumefaciens transformation method for transgenic sugarcane production presenting insect-resistance. The A. tumefaciens strain GV1303 including pARTcry1Ac vector was used for the production of transformed sugarcane. The Bacillus thuringiensis cry gene were successfully used to produce transgenic plants used for the improvement of both agronomic efficiency and product quality by acquiring insect resistance. PCR and Southern hybridization techniques were used to confirm the cry1Ac gene incorporation into sugarcane genome. Transformation percentage was 22.2% using PCR analysis with specific primers for cry1Ac and npt-II (Neomycin phosphotransferase) genes. The expression of cry1Ac gene was determined using reverse transcriptase polymerase chain reaction (RT-PCR), QuickStix test, and insect bioassays. Bioassays for transformed sugarcane plants showed high level of toxicity to Sesamia cretica giving 100% mortality of the larvae. Sugarcane insect resistance was improved significantly by using cry1Ac gene transformation.
Collapse
Affiliation(s)
- Eldessoky S Dessoky
- Department of Biology, Faculty of Science, Taif University , Taif, Kingdom of Saudi Arabia.,, Plant Genetic Transformation Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC) , Giza, Egypt
| | - Roba M Ismail
- , Plant Genetic Transformation Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC) , Giza, Egypt
| | - Nagwa I Elarabi
- Faculty of Agriculture, Genetics Department, Cairo University , Giza, Egypt
| | | | - Naglaa A Abdallah
- Faculty of Agriculture, Genetics Department, Cairo University , Giza, Egypt
| |
Collapse
|
7
|
Basso MF, Arraes FBM, Grossi-de-Sa M, Moreira VJV, Alves-Ferreira M, Grossi-de-Sa MF. Insights Into Genetic and Molecular Elements for Transgenic Crop Development. FRONTIERS IN PLANT SCIENCE 2020; 11:509. [PMID: 32499796 PMCID: PMC7243915 DOI: 10.3389/fpls.2020.00509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
Climate change and the exploration of new areas of cultivation have impacted the yields of several economically important crops worldwide. Both conventional plant breeding based on planned crosses between parents with specific traits and genetic engineering to develop new biotechnological tools (NBTs) have allowed the development of elite cultivars with new features of agronomic interest. The use of these NBTs in the search for agricultural solutions has gained prominence in recent years due to their rapid generation of elite cultivars that meet the needs of crop producers, and the efficiency of these NBTs is closely related to the optimization or best use of their elements. Currently, several genetic engineering techniques are used in synthetic biotechnology to successfully improve desirable traits or remove undesirable traits in crops. However, the features, drawbacks, and advantages of each technique are still not well understood, and thus, these methods have not been fully exploited. Here, we provide a brief overview of the plant genetic engineering platforms that have been used for proof of concept and agronomic trait improvement, review the major elements and processes of synthetic biotechnology, and, finally, present the major NBTs used to improve agronomic traits in socioeconomically important crops.
Collapse
Affiliation(s)
| | - Fabrício Barbosa Monteiro Arraes
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maíra Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Valdeir Junio Vaz Moreira
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
8
|
de Souza WR, Pacheco TF, Duarte KE, Sampaio BL, de Oliveira Molinari PA, Martins PK, Santiago TR, Formighieri EF, Vinecky F, Ribeiro AP, da Cunha BADB, Kobayashi AK, Mitchell RAC, de Sousa Rodrigues Gambetta D, Molinari HBC. Silencing of a BAHD acyltransferase in sugarcane increases biomass digestibility. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:111. [PMID: 31080518 PMCID: PMC6501328 DOI: 10.1186/s13068-019-1450-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Sugarcane (Saccharum spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries. This makes it an ideal candidate for improving composition of its residues (mostly cell walls), making them more suitable for cellulosic ethanol production. In this paper, we report an approach to improving saccharification of sugarcane straw by RNAi silencing of the recently discovered BAHD01 gene responsible for feruloylation of grass cell walls. RESULTS We identified six BAHD genes in the sugarcane genome (SacBAHDs) and generated five lines with substantially decreased SacBAHD01 expression. To find optimal conditions for determining saccharification of sugarcane straw, we tried multiple combinations of solvent and temperature pretreatment conditions, devising a predictive model for finding their effects on glucose release. Under optimal conditions, demonstrated by Organosolv pretreatment using 30% ethanol for 240 min, transgenic lines showed increases in saccharification efficiency of up to 24%. The three lines with improved saccharification efficiency had lower cell-wall ferulate content but unchanged monosaccharide and lignin compositions. CONCLUSIONS The silencing of SacBAHD01 gene and subsequent decrease of cell-wall ferulate contents indicate a promising novel biotechnological approach for improving the suitability of sugarcane residues for cellulosic ethanol production. In addition, the Organosolv pretreatment of the genetically modified biomass and the optimal conditions for the enzymatic hydrolysis presented here might be incorporated in the sugarcane industry for bioethanol production.
Collapse
Affiliation(s)
- Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
- Centre of Natural Sciences and Humanities, Federal University of ABC, São Bernardo do Campo, SP 09606-045 Brazil
| | - Thályta Fraga Pacheco
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Karoline Estefani Duarte
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Bruno Leite Sampaio
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Polyana Kelly Martins
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Thaís Ribeiro Santiago
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Felipe Vinecky
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | - Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | - Adilson Kenji Kobayashi
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF 70770-901 Brazil
| | | | | | | |
Collapse
|
9
|
Zhou D, Liu X, Gao S, Guo J, Su Y, Ling H, Wang C, Li Z, Xu L, Que Y. Foreign cry1Ac gene integration and endogenous borer stress-related genes synergistically improve insect resistance in sugarcane. BMC PLANT BIOLOGY 2018; 18:342. [PMID: 30526526 PMCID: PMC6288918 DOI: 10.1186/s12870-018-1536-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/19/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Sugarcane (Saccharum spp. hybrids) is considered the most globally important sugar-producing crop and raw material for biofuel. Insect attack is a major issue in sugarcane cultivation, resulting in yield losses and sucrose content reductions. Stem borer (Diatraea saccharalis F.) causes serious yield losses in sugarcane worldwide. However, insect-resistant germplasms for sugarcane are not available in any collections all over the world, and the molecular mechanism of insect resistance has not been elucidated. In this study, cry1Ac transgenic sugarcane lines were obtained and the biological characteristics and transgene dosage effect were investigated and a global exploration of gene expression by transcriptome analysis was performed. RESULTS The transgene copies of foreign cry1Ac were variable and random. The correlation between the cry1Ac protein and cry1Ac gene copies differed between the transgenic lines from FN15 and ROC22. The medium copy lines from FN15 showed a significant linear relationship, while ROC22 showed no definite dosage effect. The transgenic lines with medium copies of cry1Ac showed an elite phenotype. Transcriptome analysis by RNA sequencing indicated that up/down regulated differentially expressed genes were abundant among the cry1Ac sugarcane lines and the receptor variety. Foreign cry1Ac gene and endogenous borer stress-related genes may have a synergistic effect. Three lines, namely, A1, A5, and A6, were selected for their excellent stem borer resistance and phenotypic traits and are expected to be used directly as cultivars or crossing parents for sugarcane borer resistance breeding. CONCLUSIONS Cry1Ac gene integration dramatically improved sugarcane insect resistance. The elite transgenic offspring contained medium transgene copies. Foreign cry1Ac gene integration and endogenous borer stress-related genes may have a synergistic effect on sugarcane insect resistance improvement.
Collapse
Affiliation(s)
- Dinggang Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, School of Life Science, Xiangtan, 411201 Hunan China
| | - Xiaolan Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, School of Life Science, Xiangtan, 411201 Hunan China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Chunfeng Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Zhu Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| |
Collapse
|