1
|
Chamness JC, Kumar J, Cruz AJ, Rhuby E, Holum MJ, Cody JP, Tibebu R, Gamo ME, Starker CG, Zhang F, Voytas DF. An extensible vector toolkit and parts library for advanced engineering of plant genomes. THE PLANT GENOME 2023:e20312. [PMID: 36896468 DOI: 10.1002/tpg2.20312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Plant biotechnology is rife with new advances in transformation and genome engineering techniques. A common requirement for delivery and coordinated expression in plant cells, however, places the design and assembly of transformation constructs at a crucial juncture as desired reagent suites grow more complex. Modular cloning principles have simplified some aspects of vector design, yet many important components remain unavailable or poorly adapted for rapid implementation in biotechnology research. Here, we describe a universal Golden Gate cloning toolkit for vector construction. The toolkit chassis is compatible with the widely accepted Phytobrick standard for genetic parts, and supports assembly of arbitrarily complex T-DNAs through improved capacity, positional flexibility, and extensibility in comparison to extant kits. We also provision a substantial library of newly adapted Phytobricks, including regulatory elements for monocot and dicot gene expression, and coding sequences for genes of interest such as reporters, developmental regulators, and site-specific recombinases. Finally, we use a series of dual-luciferase assays to measure contributions to expression from promoters, terminators, and from cross-cassette interactions attributable to enhancer elements in certain promoters. Taken together, these publicly available cloning resources can greatly accelerate the testing and deployment of new tools for plant engineering.
Collapse
Affiliation(s)
- James C Chamness
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jitesh Kumar
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Anna J Cruz
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Elissa Rhuby
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Mason J Holum
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Jon P Cody
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Redeat Tibebu
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Maria Elena Gamo
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Colby G Starker
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Feng Zhang
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Malenica N, Dunić JA, Vukadinović L, Cesar V, Šimić D. Genetic Approaches to Enhance Multiple Stress Tolerance in Maize. Genes (Basel) 2021; 12:genes12111760. [PMID: 34828366 PMCID: PMC8617808 DOI: 10.3390/genes12111760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
The multiple-stress effects on plant physiology and gene expression are being intensively studied lately, primarily in model plants such as Arabidopsis, where the effects of six stressors have simultaneously been documented. In maize, double and triple stress responses are obtaining more attention, such as simultaneous drought and heat or heavy metal exposure, or drought in combination with insect and fungal infestation. To keep up with these challenges, maize natural variation and genetic engineering are exploited. On one hand, quantitative trait loci (QTL) associated with multiple-stress tolerance are being identified by molecular breeding and genome-wide association studies (GWAS), which then could be utilized for future breeding programs of more resilient maize varieties. On the other hand, transgenic approaches in maize have already resulted in the creation of many commercial double or triple stress resistant varieties, predominantly weed-tolerant/insect-resistant and, additionally, also drought-resistant varieties. It is expected that first generation gene-editing techniques, as well as recently developed base and prime editing applications, in combination with the routine haploid induction in maize, will pave the way to pyramiding more stress tolerant alleles in elite lines/varieties on time.
Collapse
Affiliation(s)
- Nenad Malenica
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Jasenka Antunović Dunić
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000 Osijek, Croatia; (J.A.D.); (V.C.)
| | - Lovro Vukadinović
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia;
| | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000 Osijek, Croatia; (J.A.D.); (V.C.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Domagoj Šimić
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska 25, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-31-515-521
| |
Collapse
|
3
|
Atkins PAP, Gamo MES, Voytas DF. Analyzing Plant Gene Targeting Outcomes and Conversion Tracts with Nanopore Sequencing. Int J Mol Sci 2021; 22:ijms22189723. [PMID: 34575882 PMCID: PMC8467259 DOI: 10.3390/ijms22189723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
The high-throughput molecular analysis of gene targeting (GT) events is made technically challenging by the residual presetabce of donor molecules. Large donor molecules restrict primer placement, resulting in long amplicons that cannot be readily analyzed using standard NGS pipelines or qPCR-based approaches such as ddPCR. In plants, removal of excess donor is time and resource intensive, often requiring plant regeneration and weeks to months of effort. Here, we utilized Oxford Nanopore Amplicon Sequencing (ONAS) to bypass the limitations imposed by donor molecules with 1 kb of homology to the target and dissected GT outcomes at three loci in Nicotiana benthamia leaves. We developed a novel bioinformatic pipeline, Phased ANalysis of Genome Editing Amplicons (PANGEA), to reduce the effect of ONAS error on amplicon analysis and captured tens of thousands of somatic plant GT events. Additionally, PANGEA allowed us to collect thousands of GT conversion tracts 5 days after reagent delivery with no selection, revealing that most events utilized tracts less than 100 bp in length when incorporating an 18 bp or 3 bp insertion. These data demonstrate the usefulness of ONAS and PANGEA for plant GT analysis and provide a mechanistic basis for future plant GT optimization.
Collapse
Affiliation(s)
- Paul A. P. Atkins
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.P.A.); (M.E.S.G.)
| | - Maria Elena S. Gamo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.P.A.); (M.E.S.G.)
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.P.A.); (M.E.S.G.)
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
4
|
Atkins PA, Voytas DF. Overcoming bottlenecks in plant gene editing. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:79-84. [PMID: 32143167 DOI: 10.1016/j.pbi.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 05/06/2023]
Abstract
Agriculture has reached a technological inflection point. The development of novel gene editing tools and methods for their delivery to plant cells promises to increase genome malleability and transform plant biology. Whereas gene editing is capable of making a myriad of DNA sequence modifications, its widespread adoption has been hindered by a number of factors, particularly inefficiencies in creating precise DNA sequence modifications and ineffective methods for delivering gene editing reagents to plant cells. Here, we briefly overview the principles of plant genome editing and highlight a subset of the most recent advances that promise to overcome current limitations.
Collapse
Affiliation(s)
- Paul Ap Atkins
- Center for Genome Engineering, Center for Precision Plant Genomics and Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
| | - Daniel F Voytas
- Center for Genome Engineering, Center for Precision Plant Genomics and Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|