1
|
Pandit A, Indurkar A, Locs J, Haugen HJ, Loca D. Calcium Phosphates: A Key to Next-Generation In Vitro Bone Modeling. Adv Healthc Mater 2024; 13:e2401307. [PMID: 39175382 PMCID: PMC11582516 DOI: 10.1002/adhm.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Indexed: 08/24/2024]
Abstract
The replication of bone physiology under laboratory conditions is a prime target behind the development of in vitro bone models. The model should be robust enough to elicit an unbiased response when stimulated experimentally, giving reproducible outcomes. In vitro bone tissue generation majorly requires the availability of cellular components, the presence of factors promoting cellular proliferation and differentiation, efficient nutrient supply, and a supporting matrix for the cells to anchor - gaining predefined topology. Calcium phosphates (CaP) are difficult to ignore while considering the above requirements of a bone model. Therefore, the current review focuses on the role of CaP in developing an in vitro bone model addressing the prerequisites of bone tissue generation. Special emphasis is given to the physico-chemical properties of CaP that promote osteogenesis, angiogenesis and provide sufficient mechanical strength for load-bearing applications. Finally, the future course of action is discussed to ensure efficient utilization of CaP in the in vitro bone model development field.
Collapse
Affiliation(s)
- Ashish Pandit
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Abhishek Indurkar
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Janis Locs
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | | | - Dagnija Loca
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| |
Collapse
|
2
|
Finlay M, Hill LA, Neag G, Patel B, Chipara M, Lamont HC, Frost K, Patrick K, Lewis JW, Nicholson T, Edwards J, Jones SW, Grover LM, Naylor AJ. A detailed methodology for a three-dimensional, self-structuring bone model that supports the differentiation of osteoblasts towards osteocytes and the production of a complex collagen-rich mineralised matrix. F1000Res 2024; 12:357. [PMID: 38778815 PMCID: PMC11109547 DOI: 10.12688/f1000research.130779.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background There are insufficient in vitro bone models that accommodate long-term culture of osteoblasts and support their differentiation to osteocytes. The increased demand for effective therapies for bone diseases, and the ethical requirement to replace animals in research, warrants the development of such models.Here we present an in-depth protocol to prepare, create and maintain three-dimensional, in vitro, self-structuring bone models that support osteocytogenesis and long-term osteoblast survival (>1 year). Methods Osteoblastic cells are seeded on a fibrin hydrogel, cast between two beta-tricalcium phosphate anchors. Analytical methods optimised for these self-structuring bone model (SSBM) constructs, including RT-qPCR, immunofluorescence staining and XRF, are described in detail. Results Over time, the cells restructure and replace the initial matrix with a collagen-rich, mineralising one; and demonstrate differentiation towards osteocytes within 12 weeks of culture. Conclusions Whilst optimised using a secondary human cell line (hFOB 1.19), this protocol readily accommodates osteoblasts from other species (rat and mouse) and origins (primary and secondary). This simple, straightforward method creates reproducible in vitro bone models that are responsive to exogenous stimuli, offering a versatile platform for conducting preclinical translatable research studies.
Collapse
Affiliation(s)
- Melissa Finlay
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Laurence A Hill
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Binal Patel
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Miruna Chipara
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Hannah C Lamont
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Kathryn Frost
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Kieran Patrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Jonathan W Lewis
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - James Edwards
- NDORMS, University of Oxford, Oxford, Oxfordshire, OX3 7HE, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Liam M Grover
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| |
Collapse
|
3
|
de Leeuw AM, Graf R, Lim PJ, Zhang J, Schädli GN, Peterhans S, Rohrbach M, Giunta C, Rüger M, Rubert M, Müller R. Physiological cell bioprinting density in human bone-derived cell-laden scaffolds enhances matrix mineralization rate and stiffness under dynamic loading. Front Bioeng Biotechnol 2024; 12:1310289. [PMID: 38419730 PMCID: PMC10900528 DOI: 10.3389/fbioe.2024.1310289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Human organotypic bone models are an emerging technology that replicate bone physiology and mechanobiology for comprehensive in vitro experimentation over prolonged periods of time. Recently, we introduced a mineralized bone model based on 3D bioprinted cell-laden alginate-gelatin-graphene oxide hydrogels cultured under dynamic loading using commercially available human mesenchymal stem cells. In the present study, we created cell-laden scaffolds from primary human osteoblasts isolated from surgical waste material and investigated the effects of a previously reported optimal cell printing density (5 × 106 cells/mL bioink) vs. a higher physiological cell density (10 × 106 cells/mL bioink). We studied mineral formation, scaffold stiffness, and cell morphology over a 10-week period to determine culture conditions for primary human bone cells in this microenvironment. For analysis, the human bone-derived cell-laden scaffolds underwent multiscale assessment at specific timepoints. High cell viability was observed in both groups after bioprinting (>90%) and after 2 weeks of daily mechanical loading (>85%). Bioprinting at a higher cell density resulted in faster mineral formation rates, higher mineral densities and remarkably a 10-fold increase in stiffness compared to a modest 2-fold increase in the lower printing density group. In addition, physiological cell bioprinting densities positively impacted cell spreading and formation of dendritic interconnections. We conclude that our methodology of processing patient-specific human bone cells, subsequent biofabrication and dynamic culturing reliably affords mineralized cell-laden scaffolds. In the future, in vitro systems based on patient-derived cells could be applied to study the individual phenotype of bone disorders such as osteogenesis imperfecta and aid clinical decision making.
Collapse
Affiliation(s)
| | - Reto Graf
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Pei Jin Lim
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jianhua Zhang
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | - Marianne Rohrbach
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Rüger
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Pediatric Orthopaedics and Traumatology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Toni R, Barbaro F, Di Conza G, Zini N, Remaggi G, Elviri L, Spaletta G, Quarantini E, Quarantini M, Mosca S, Caravelli S, Mosca M, Ravanetti F, Sprio S, Tampieri A. A bioartificial and vasculomorphic bone matrix-based organoid mimicking microanatomy of flat and short bones. J Biomed Mater Res B Appl Biomater 2024; 112:e35329. [PMID: 37898921 DOI: 10.1002/jbm.b.35329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
We engineered an in vitro model of bioartificial 3D bone organoid consistent with an anatomical and vascular microenvironment common to mammalian flat and short bones. To achieve this, we chose the decellularized-decalcified matrix of the adult male rat scapula, implemented with the reconstruction of its intrinsic vessels, obtained through an original intravascular perfusion with polylevolactic (PLLA), followed by coating of the PLLA-fabricated vascularization with rat tail collagen. As a result, the 3D bone and vascular geometry of the native bone cortical and cancellous compartments was reproduced, and the rat tail collagen-PLLA biomaterial could in vitro act as a surrogate of the perivascular extracellular matrix (ECM) around the wall of the biomaterial-reconstituted cancellous vessels. As a proof-of-concept of cell compatibility and site-dependent osteoinductive properties of this bioartificial 3D construct, we show that it in vitro leads to a time-dependent microtopographic positioning of rat mesenchymal stromal cells (MSCs), initiating an osteogenic fate in relation to the bone compartment. In addition, coating of PLLA-reconstructed vessels with rat tail collagen favored perivascular attachment and survival of MSC-like cells (mouse embryonic fibroblasts), confirming its potentiality as a perivascular stroma for triggering competence of seeded MSCs. Finally, in vivo radiographic topography of bone lesions in the human jaw and foot tarsus of subjects with primary osteoporosis revealed selective bone cortical versus cancellous involvement, suggesting usefulness of a human 3D bone organoid engineered with the same principles of our rat organoid, to in vitro investigate compartment-dependent activities of human MSC in flat and short bones under experimental osteoporotic challenge. We conclude that our 3D bioartificial construct offers a reliable replica of flat and short bones microanatomy, and promises to help in building a compartment-dependent mechanistic perspective of bone remodeling, including the microtopographic dysregulation of osteoporosis.
Collapse
Affiliation(s)
- Roberto Toni
- ISSMC, CNR, Faenza, Italy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center-Tufts University School of Medicine, Boston, Massachusetts, USA
- Academy of Sciences of the Institute of Bologna, Section IV-Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery-DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine-BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery-DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine-BIOMED, University of Parma, Parma, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Remaggi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | - Giulia Spaletta
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Enrico Quarantini
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Marco Quarantini
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Ravanetti
- Department of Veterinary Medical Sciences, Section of Anatomy, University of Parma, Parma, Italy
| | | | | |
Collapse
|
5
|
Yang X, Zheng T, Yang N, Yin Z, Wang W, Bai Y. A Review of the research methods and progress of biocompatibility evaluation of root canal sealers. AUST ENDOD J 2023; 49 Suppl 1:508-514. [PMID: 36480411 DOI: 10.1111/aej.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
The function of root canal sealer was to achieve an appropriate three-dimensional filling effect by filling the root canal and some irregular lumen, thereby inhibiting the residual bacteria. There were many types of sealers, but research to find the most suitable ones was still ongoing. In recent years, researchers had continuously improved the performance of sealers by developing new sealers or adding active ingredients to the sealers. However, most sealers exhibit varying degrees of cytotoxicity and tissue responses, which affect clinical therapy efficacy. This review describes different technical approaches, and recent research progress in the biocompatibility evaluation of root canal sealers and provides brief insights into this field by summarising the performance studies of different root canal sealers.
Collapse
Affiliation(s)
- Xiliang Yang
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Tianxia Zheng
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Nuoya Yang
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Zihan Yin
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Wuliang Wang
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Yuhong Bai
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| |
Collapse
|
6
|
Knowles HJ, Chanalaris A, Koutsikouni A, Cribbs AP, Grover LM, Hulley PA. Mature primary human osteocytes in mini organotypic cultures secrete FGF23 and PTH1-34-regulated sclerostin. Front Endocrinol (Lausanne) 2023; 14:1167734. [PMID: 37223031 PMCID: PMC10200954 DOI: 10.3389/fendo.2023.1167734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction For decades, functional primary human osteocyte cultures have been crucially needed for understanding their role in bone anabolic processes and in endocrine phosphate regulation via the bone-kidney axis. Mature osteocyte proteins (sclerostin, DMP1, Phex and FGF23) play a key role in various systemic diseases and are targeted by successful bone anabolic drugs (anti-sclerostin antibody and teriparatide (PTH1-34)). However, cell lines available to study osteocytes produce very little sclerostin and low levels of mature osteocyte markers. We have developed a primary human 3D organotypic culture system that replicates the formation of mature osteocytes in bone. Methods Primary human osteoblasts were seeded in a fibrinogen / thrombin gel around 3D-printed hanging posts. Following contraction of the gel around the posts, cells were cultured in osteogenic media and conditioned media was collected for analysis of secreted markers of osteocyte formation. Results The organoids were viable for at least 6 months, allowing co-culture with different cell types and testing of bone anabolic drugs. Bulk RNAseq data displayed the developing marker trajectory of ossification and human primary osteocyte formation in vitro over an initial 8- week period. Vitamin D3 supplementation increased mineralization and sclerostin secretion, while hypoxia and PTH1-34 modulated sclerostin. Our culture system also secreted FGF23, enabling the future development of a bone-kidney-parathyroid-vascular multi-organoid or organ-on-a-chip system to study disease processes and drug effects using purely human cells. Discussion This 3D organotypic culture system provides a stable, long-lived, and regulated population of mature human primary osteocytes for a variety of research applications.
Collapse
Affiliation(s)
- Helen J. Knowles
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anastasios Chanalaris
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Argyro Koutsikouni
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Adam P. Cribbs
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, Botnar Institute for Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Liam M. Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Philippa A. Hulley
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater 2023; 23:156-169. [PMID: 36406248 PMCID: PMC9661677 DOI: 10.1016/j.bioactmat.2022.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The skeletal system is responsible for weight-bearing, organ protection, and movement. Bone diseases caused by trauma, infection, and aging can seriously affect a patient's quality of life. Bone targeted biomaterials are suitable for the treatment of bone diseases. Biomaterials with bone-targeted properties can improve drug utilization and reduce side effects. A large number of bone-targeted micro-nano materials have been developed. However, only a few studies addressed bone-targeted hydrogel. The large size of hydrogel makes it difficult to achieve systematic targeting. However, local targeted hydrogel still has significant prospects. Molecules in bone/cartilage extracellular matrix and bone cells provide binding sites for bone-targeted hydrogel. Drug delivery systems featuring microgels with targeting properties is a key construction strategy for bone-targeted hydrogel. Besides, injectable hydrogel drug depot carrying bone-targeted drugs is another strategy. In this review, we summarize the bone-targeted hydrogel through application environment, construction strategies and disease applications. We hope this article will provide a reference for the development of bone-targeted hydrogels. We also hope this article could increase awareness of bone-targeted materials. Introducing the microenvironment and target molecules in different parts of long bones. Summarizing the construction strategy of micro/nanoparticle hydrogel with bone targeting properties. Summarizing the construction strategy of hydrogel based depot carrying bone-targeted drugs. Reporting the application and effect of bone targeting hydrogel in common bone diseases.
Collapse
|
8
|
Gomes PS, Pinheiro B, Colaço B, Fernandes MH. The Osteogenic Assessment of Mineral Trioxide Aggregate-based Endodontic Sealers in an Organotypic Ex Vivo Bone Development Model. J Endod 2021; 47:1461-1466. [PMID: 34126159 DOI: 10.1016/j.joen.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Mineral trioxide aggregate (MTA)-based sealers are endodontic materials with widespread success in distinct clinical applications, potentially embracing direct contact with the bone tissue. Bone response to these materials has been traditionally addressed in vitro. Nonetheless, translational data are limited by the absence of native cell-to-cell and cell-to-matrix interactions that hinder the representativeness of the analysis. Ex vivo organotypic systems, relying on the culture of explanted biological tissues, preserve the cell/tissue composition, reproducing the spatial and organizational in situ complexity. This study was grounded on an innovative research approach, relying on the assessment of an ex vivo organotypic bone tissue culture system to address the osteogenic response to 3 distinct MTA-based sealers. METHODS Embryonic chick femurs were isolated and grown ex vivo for 11 days in the presence of MTA Plus (Avalon Biomed Inc, Bradenton, FL), ProRoot MTA (Dentsply Tulsa Dental, Hohnson City, Germany), Biodentine (Septodont, Saint Maurdes Fosses, France), or AH Plus (Dentsply Sirona, Konstanz, Germany); the latter was used as a control material. Femurs were characterized by histologic, histochemical, and histomorphometric analysis. Gene expression assessment of relevant osteogenic markers was conducted by quantitative polymerase chain reaction. RESULTS All MTA-based sealers presented an enhanced osteogenic performance compared with AH Plus. Histochemical and histomorphometric analyses support the increased activation of the osteogenic program by MTA-based sealers, with enhanced collagenous matrix deposition and tissue mineralization. Gene expression analysis supported the enhanced activation of the osteogenic program. Comparatively, ProRoot MTA induced the highest osteogenic functionality on the characterized femurs. CONCLUSIONS MTA-based sealers enhanced the osteogenic activity within the assayed organotypic bone model, which was found to be a sensitive system for the assessment of osteogenic modulation mediated by endodontic sealers.
Collapse
Affiliation(s)
- Pedro S Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; Associated Laboratory for Green Chemistry/Network of Chemistry and Technology (LAQV/REQUIMTE), University of Porto, Porto, Portugal.
| | - Bruna Pinheiro
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Bruno Colaço
- Department of Zootechnics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria H Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; Associated Laboratory for Green Chemistry/Network of Chemistry and Technology (LAQV/REQUIMTE), University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Iordachescu A, Hughes EAB, Joseph S, Hill EJ, Grover LM, Metcalfe AD. Trabecular bone organoids: a micron-scale 'humanised' prototype designed to study the effects of microgravity and degeneration. NPJ Microgravity 2021; 7:17. [PMID: 34021163 PMCID: PMC8140135 DOI: 10.1038/s41526-021-00146-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
Bone is a highly responsive organ, which continuously adapts to the environment it is subjected to in order to withstand metabolic demands. These events are difficult to study in this particular tissue in vivo, due to its rigid, mineralised structure and inaccessibility of the cellular component located within. This manuscript presents the development of a micron-scale bone organoid prototype, a concept that can allow the study of bone processes at the cell-tissue interface. The model is constructed with a combination of primary female osteoblastic and osteoclastic cells, seeded onto femoral head micro-trabeculae, where they recapitulate relevant phenotypes and functions. Subsequently, constructs are inserted into a simulated microgravity bioreactor (NASA-Synthecon) to model a pathological state of reduced mechanical stimulation. In these constructs, we detected osteoclastic bone resorption sites, which were different in morphology in the simulated microgravity group compared to static controls. Once encapsulated in human fibrin and exposed to analogue microgravity for 5 days, masses of bone can be observed being lost from the initial structure, allowing to simulate the bone loss process further. Constructs can function as multicellular, organotypic units. Large osteocytic projections and tubular structures develop from the initial construct into the matrix at the millimetre scale. Micron-level fragments from the initial bone structure are detected travelling along these tubules and carried to sites distant from the native structure, where new matrix formation is initiated. We believe this model allows the study of fine-level physiological processes, which can shed light into pathological bone loss and imbalances in bone remodelling.
Collapse
Affiliation(s)
- Alexandra Iordachescu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK.
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stephan Joseph
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- The Binding Site, Edgbaston, Birmingham, UK
| | - Eric J Hill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| | - Anthony D Metcalfe
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
10
|
Owen R, Bahmaee H, Claeyssens F, Reilly GC. Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-derived Osteoblasts. Bioengineering (Basel) 2020; 7:E12. [PMID: 31972962 PMCID: PMC7148480 DOI: 10.3390/bioengineering7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023] Open
Abstract
There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound's action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17β-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Hossein Bahmaee
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
| |
Collapse
|