1
|
Chan AKC, Ranjitham Gopalakrishnan N, Traore YL, Ho EA. Formulating biopharmaceuticals using three-dimensional printing. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12797. [PMID: 38558867 PMCID: PMC10979422 DOI: 10.3389/jpps.2024.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Additive manufacturing, commonly referred to as three-dimensional (3D) printing, has the potential to initiate a paradigm shift in the field of medicine and drug delivery. Ever since the advent of the first-ever United States Food and Drug Administration (US FDA)-approved 3D printed tablet, there has been an increased interest in the application of this technology in drug delivery and biomedical applications. 3D printing brings us one step closer to personalized medicine, hence rendering the "one size fits all" concept in drug dosing obsolete. In this review article, we focus on the recent developments in the field of modified drug delivery systems in which various types of additive manufacturing technologies are applied.
Collapse
Affiliation(s)
- Alistair K. C. Chan
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Nehil Ranjitham Gopalakrishnan
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Yannick Leandre Traore
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Emmanuel A. Ho
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| |
Collapse
|
2
|
Pharmacokinetics and efficacy of topical inserts containing tenofovir alafenamide fumarate and elvitegravir administered rectally in macaques. EBioMedicine 2022; 86:104338. [DOI: 10.1016/j.ebiom.2022.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
3
|
Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HA, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022; 186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.
Collapse
|
4
|
Fused deposition modeling three-dimensional printing of flexible polyurethane intravaginal rings with controlled tunable release profiles for multiple active drugs. Drug Deliv Transl Res 2022; 12:906-924. [PMID: 35211869 PMCID: PMC8870081 DOI: 10.1007/s13346-022-01133-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 11/23/2022]
Abstract
We designed and engineered novel intravaginal ring (IVR) medical devices via fused deposition modeling (FDM) three-dimensional (3D) printing for controlled delivery of hydroxychloroquine, IgG, gp120 fragment (encompassing the CD4 binding site), and coumarin 6 PLGA-PEG nanoparticles (C6NP). The hydrophilic polyurethanes were utilized to 3D-print reservoir-type IVRs containing a tunable release controlling membrane (RCM) with varying thickness and adaptable micro porous structures (by altering the printing patterns and interior fill densities) for controlled sustained drug delivery over 14 days. FDM 3D printing of IVRs were optimized and implemented using a lab-developed Cartesian 3D printer. The structures were investigated by scanning electron microscopy (SEM) imaging and in vitro release was performed using 5 mL of daily-replenished vaginal fluid simulant (pH 4.2). The release kinetics of the IVR segments were tunable with various RCM (outer diameter to inner diameter ratio ranging from 1.12 to 2.61) produced from FDM 3D printing by controlling the printing perimeter to provide daily zero-order release of HCQ ranging from 23.54 ± 3.54 to 261.09 ± 32.49 µg/mL/day. IgG, gp120 fragment, and C6NP release rates demonstrated pattern and in-fill density-dependent characteristics. The current study demonstrated the utility of FDM 3D printing to rapidly fabricate complex micro-structures for tunable and sustained delivery of a variety of compounds including HCQ, IgG, gp120 fragment, and C6NP from IVRs in a controlled manner.
Collapse
|
5
|
Thapa R, Gurung S, Parat MO, Parekh HS, Pandey P. Application of Sol–Gels for Treatment of Gynaecological Conditions—Physiological Perspectives and Emerging Concepts in Intravaginal Drug Delivery. Gels 2022; 8:gels8020099. [PMID: 35200479 PMCID: PMC8871440 DOI: 10.3390/gels8020099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Approaches for effective and sustained drug delivery to the female reproductive tract (FRT) for treating a range of gynaecological conditions remain limited. The development of versatile delivery platforms, such as soluble gels (sol–gels) coupled with applicators/devices, holds considerable therapeutic potential for gynaecological conditions. Sol–gel systems, which undergo solution-to-gel transition, triggered by physiological conditions such as changes in temperature, pH, or ion composition, offer advantages of both solution- and gel-based drug formulations. Furthermore, they have potential to be used as a suitable drug delivery vehicle for other novel drug formulations, including micro- and nano-particulate systems, enabling the delivery of drug molecules of diverse physicochemical character. We provide an anatomical and physiological perspective of the significant challenges and opportunities in attaining optimal drug delivery to the upper and lower FRT. Discussion then focuses on attributes of sol–gels that can vastly improve the treatment of gynaecological conditions. The review concludes by showcasing recent advances in vaginal formulation design, and proposes novel formulation strategies enabling the infusion of a wide range of therapeutics into sol–gels, paving the way for patient-friendly treatment regimens for acute and chronic FRT-related conditions such as bacterial/viral infection control (e.g., STDs), contraception, hormone replacement therapy (HRT), infertility, and cancer.
Collapse
Affiliation(s)
- Ritu Thapa
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
| | - Shila Gurung
- School of Health and Allied Sciences, Pokhara University, Pokhara-30, Kaski 33700, Nepal;
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
| | - Harendra S. Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
- Correspondence: (H.S.P.); (P.P.)
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
- Correspondence: (H.S.P.); (P.P.)
| |
Collapse
|
6
|
Petit E, Bosch L, Costa AM, Rodríguez-Izquierdo I, Sepúlveda-Crespo D, Muñoz-Fernández MA, Vilarrasa J. BMS Derivatives C7-Linked to β-Cyclodextrin and Hyperbranched Polyglycerol Retain Activity against R5-HIV-1 NLAD8 Isolates and Can Be Deemed Potential Microbicides. ChemMedChem 2021; 16:2217-2222. [PMID: 33843142 DOI: 10.1002/cmdc.202100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/02/2021] [Indexed: 12/30/2022]
Abstract
Amides from indole-3-glyoxylic acid and 4-benzoyl-2-methylpiperazine, which are related to entry inhibitors developed by Bristol-Myers Squibb (BMS), have been synthesized with aliphatic chains located at the C7 position of the indole ring. These spacers contain an azido group suitable for the well-known Cu(I)-catalyzed (3+2)-cycloaddition or an activated triple bond for the nucleophilic addition of thiols under physiological conditions. Reaction with polyols (β-cyclodextrin and hyperbranched polyglycerol) decorated with complementary click partners has afforded polyol-BMS-like conjugates that are not cytotoxic (TZM.bl cells) and retain the activity against R5-HIV-1NLAD8 isolates. Thus, potential vaginal microbicides based on entry inhibitors, which can be called of 4th generation, are reported here for the first time.
Collapse
Affiliation(s)
- Elena Petit
- Organic Chemistry Section, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Catalonia, Spain
| | - Lluís Bosch
- Organic Chemistry Section, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Catalonia, Spain
| | - Anna M Costa
- Organic Chemistry Section, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Catalonia, Spain
| | - Ignacio Rodríguez-Izquierdo
- Laboratorio de Inmunobiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Daniel Sepúlveda-Crespo
- Laboratorio de Inmunobiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Dr. Esquerdo 46, 28007, Madrid, Spain
| | - M Angeles Muñoz-Fernández
- Laboratorio de Inmunobiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Jaume Vilarrasa
- Organic Chemistry Section, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Traore YL, Chen Y, Padilla F, Ho EA. Segmented intravaginal ring for the combination delivery of hydroxychloroquine and anti-CCR5 siRNA nanoparticles as a potential strategy for preventing HIV infection. Drug Deliv Transl Res 2021; 12:816-825. [PMID: 33866528 PMCID: PMC8888386 DOI: 10.1007/s13346-021-00983-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Abstract Vaginal drug delivery has been shown to be a promising strategy for the prevention of sexually transmitted infections. Therapy delivered at the site of infection has many advantages including improved therapeutic efficacy, reduction in systemic toxicity, and reduced potential for development of drug resistance. We developed a “smart” combination intravaginal ring (IVR) that will (1) provide continuous release of hydroxychloroquine (HCQ) to induce T cell immune quiescence as the first-line of defense and (2) release nanoparticles containing anti-CCR5 siRNA only during sexual intercourse when triggered by the presence of seminal fluid as the second-line of defense. The IVR was capable of releasing HCQ over 25 days with a mean daily release of 31.17 ± 3.06 µg/mL. In the presence of vaginal fluid simulant plus seminal fluid simulant, over 12 × more nanoparticles (5.12 ± 0.9 mg) were released over a 4-h period in comparison to IVR segments that were incubated in the presence of vaginal fluid simulant alone (0.42 ± 0.19 mg). Anti-CCR5 siRNA nanoparticles were able to knockdown 83 ± 5.1% of CCR5 gene expression in vitro in the CD4+ T cell line Sup-T1. The IVR system also demonstrated to be non-cytotoxic to VK2/E6E7 vaginal epithelial cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yannick L Traore
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Kitchener, Canada.,Waterloo Institute for Nanotechnology, Waterloo, Canada
| | - Yufei Chen
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Kitchener, Canada.,College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Kitchener, Canada. .,Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
8
|
Relaño-Rodríguez I, Muñoz-Fernández MÁ. Emergence of Nanotechnology to Fight HIV Sexual Transmission: The Trip of G2-S16 Polyanionic Carbosilane Dendrimer to Possible Pre-Clinical Trials. Int J Mol Sci 2020; 21:ijms21249403. [PMID: 33321835 PMCID: PMC7764023 DOI: 10.3390/ijms21249403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Ignacio Relaño-Rodríguez
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
- Health Research Institute Gregorio Marañon (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-586-8565
| |
Collapse
|
9
|
N'Guessan Gnaman KC, Bouttier S, Yeo A, Aka Any-Grah AAS, Geiger S, Huang N, Nicolas V, Villebrun S, Faye-Kette H, Ponchel G, Koffi AA, Agnely F. Characterization and in vitro evaluation of a vaginal gel containing Lactobacillus crispatus for the prevention of gonorrhea. Int J Pharm 2020; 588:119733. [PMID: 32768529 DOI: 10.1016/j.ijpharm.2020.119733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/26/2022]
Abstract
The increasing resistance of Neisseria gonorrhoeae to any current antibiotic treatment and the difficulties associated with the use of prevention means such as condom urge the need for alternative methods to prevent this sexually transmitted infection. In this work, a prevention strategy based on the use of a vaginal gel containing Lactobacilli was assessed in vitro. A Lactobacillus crispatus strain (ATCC 33197) was selected based on the published data on its ability to inhibit Neisseria gonorrhoeae. Its probiotic properties were first characterized. Then, a thermo-sensitive hydrogel containing 21.5% of poloxamer 407, 1% of sodium alginate and 9log10 CFU of Lactobacillus crispatus per gel sample (5 g) was developed. The gelation temperature and the rheological characteristics of this formulation appeared suitable for a vaginal administration. Lactobacillus crispatus was viable in the gel for six months although a large amount of the bacteria was not culturable. The ability of Lactobacillus crispatus to inhibit Neisseria gonorrhoeae was still observed with the gel. Such system, thus, appeared promising for the prevention of gonorrhea.
Collapse
Affiliation(s)
- K C N'Guessan Gnaman
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France; Laboratoire de Pharmacie Galénique, Cosmétologie et Législation Pharmaceutique, UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan, Université Félix Houphouet-Boigny, 01 BP V 34 Abidjan 01, Côte d'Ivoire
| | - S Bouttier
- INRAE, AgroParisTech, MIcalis Institute, Équipe Bactéries pathogènes et santé, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - A Yeo
- Institut Pasteur, Departement de microbiologie, Unité des agents du tractus génital, Abidjan, Côte d'Ivoire
| | - A A S Aka Any-Grah
- Laboratoire de Pharmacie Galénique, Cosmétologie et Législation Pharmaceutique, UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan, Université Félix Houphouet-Boigny, 01 BP V 34 Abidjan 01, Côte d'Ivoire
| | - S Geiger
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - N Huang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - V Nicolas
- Université Paris-Saclay, SFR-UMS-IPSIT, Plateforme d'imagerie cellulaire MIPSIT, 92290 Châtenay-Malabry, France
| | - S Villebrun
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - H Faye-Kette
- Institut Pasteur, Departement de microbiologie, Unité des agents du tractus génital, Abidjan, Côte d'Ivoire
| | - G Ponchel
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - A A Koffi
- Laboratoire de Pharmacie Galénique, Cosmétologie et Législation Pharmaceutique, UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan, Université Félix Houphouet-Boigny, 01 BP V 34 Abidjan 01, Côte d'Ivoire
| | - F Agnely
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
10
|
Dallal Bashi YH, McCoy CF, Murphy DJ, Boyd P, Spence P, Kleinbeck K, Devlin B, Malcolm RK. Towards a dapivirine and levonorgestrel multipurpose vaginal ring: Investigations into the reaction between levonorgestrel and addition-cure silicone elastomers. Int J Pharm 2019; 569:118574. [PMID: 31352053 DOI: 10.1016/j.ijpharm.2019.118574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
With a dapivirine-releasing vaginal ring having successfully completed late-stage clinical testing for HIV prevention and currently undergoing regulatory review, there is now growing interest in next-generation multipurpose prevention technologies that seek to combine antiretroviral and contraceptive drugs within a single product. Here, we focus on ongoing efforts to develop a silicone elastomer vaginal ring releasing both dapivirine and levonorgestrel. Specifically, we evaluate various strategies aimed at both better understanding and reducing the tendency of levonorgestrel to bind with the elastomer, including: (i) formulation and post-manufacturing strategies aimed at reducing the extent of levonorgestrel reaction with addition-cure silicone elastomers; (ii) evaluation of a simple silicone system to model the complex elastomer; (iii) use of model compounds representing the enone and ethinyl moieties of levonorgestrel to probe the mode of addition of levonorgestrel to addition-cure silicone elastomers; and (iv) solution and solid-state 13C NMR analysis to probe the structural features of the levonorgestrel-silicone system. The results demonstrate that both the enone and ethinyl groups within levonorgestrel undergo hydrosilylation reactions with the hydrosiloxane groups in the silicone elastomer leading to covalent binding. The results also highlight potential strategies for further optimising the dapivirine + levonorgestrel silicone vaginal ring formulation to ensure that the levonorgestrel is available for release.
Collapse
Affiliation(s)
| | - Clare F McCoy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Peter Boyd
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Patrick Spence
- International Partnership for Microbicides, Silver Spring, MD 20910, USA
| | - Kyle Kleinbeck
- International Partnership for Microbicides, Silver Spring, MD 20910, USA
| | - Bríd Devlin
- International Partnership for Microbicides, Silver Spring, MD 20910, USA
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
11
|
Tian W, Han S, Huang X, Han M, Cao J, Liang Y, Sun Y. LDH hybrid thermosensitive hydrogel for intravaginal delivery of anti-HIV drugs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1234-1240. [PMID: 30966834 DOI: 10.1080/21691401.2019.1596935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microbicides based on hydrogel have become an effective way to prevent the HIV replication and transmission because of their convenience and prolonging drug release. In this study, a hybrid thermo-sensitive hydrogel constituted by nanosized layered double hydroxides and poloxamer 407 (P407) was constructed and co-loaded with both hydrophobic and hydrophilic drug. The LDH-P407 hydrogel could achieve sol-gel transition at body temperature. The in vivo experiment showed that LDH-P407 hydrogel can achieve controlled release of theaflavin and Nile red (hydrophobic drug model) into blood by vaginal drug delivery, meanwhile the hydrogel showed barely mucosal irritation. In addition, ex vivo experiment showed that the nifeviroc-loaded LDH-P407 hydrogel was able to specifically bind co-receptor CCR5 of DCs cells. Therefore, the LDH-P407 hydrogel would be a promising carrier for intravaginal delivery of anti-HIV drugs.
Collapse
Affiliation(s)
- Wenxue Tian
- a Department of Pharmaceutics, School of Pharmacy , Qingdao University , Qingdao , China
| | - Shangcong Han
- a Department of Pharmaceutics, School of Pharmacy , Qingdao University , Qingdao , China
| | - Xia Huang
- a Department of Pharmaceutics, School of Pharmacy , Qingdao University , Qingdao , China
| | - Mei Han
- a Department of Pharmaceutics, School of Pharmacy , Qingdao University , Qingdao , China
| | - Jie Cao
- a Department of Pharmaceutics, School of Pharmacy , Qingdao University , Qingdao , China
| | - Yan Liang
- a Department of Pharmaceutics, School of Pharmacy , Qingdao University , Qingdao , China
| | - Yong Sun
- a Department of Pharmaceutics, School of Pharmacy , Qingdao University , Qingdao , China
| |
Collapse
|
12
|
Fulcher JA, Tamshen K, Wollenberg AL, Kickhoefer VA, Mrazek J, Elliott J, Ibarrondo FJ, Anton PA, Rome LH, Maynard HD, Deming T, Yang OO. Human Vault Nanoparticle Targeted Delivery of Antiretroviral Drugs to Inhibit Human Immunodeficiency Virus Type 1 Infection. Bioconjug Chem 2019; 30:2216-2227. [PMID: 31265254 DOI: 10.1021/acs.bioconjchem.9b00451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1.
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Kyle Tamshen
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States
| | - Alexander L Wollenberg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States
| | - Valerie A Kickhoefer
- Department of Biological Chemistry , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Jan Mrazek
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Julie Elliott
- Vatche and Tamar Manoukian Division of Digestive Diseases , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - F Javier Ibarrondo
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Peter A Anton
- Vatche and Tamar Manoukian Division of Digestive Diseases , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,AIDS Healthcare Foundation , Los Angeles , California , United States
| | - Leonard H Rome
- Department of Biological Chemistry , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States.,Department of Bioengineering , University of California , Los Angeles , California , United States
| | - Timothy Deming
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States.,Department of Bioengineering , University of California , Los Angeles , California , United States
| | - Otto O Yang
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,AIDS Healthcare Foundation , Los Angeles , California , United States
| |
Collapse
|
13
|
McBride JW, Malcolm RK, Dias N, Cameron D, Offord RE, Hartley O, Kett VL, Devlin B, Boyd P. Development and pharmacokinetics of a combination vaginal ring for sustained release of dapivirine and the protein microbicide 5P12-RANTES. Int J Pharm 2019; 564:207-213. [PMID: 30999049 DOI: 10.1016/j.ijpharm.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/16/2022]
Abstract
The past fifteen years have witnessed a resurgence of interest in vaginal ring technologies for drug delivery applications, mostly driven by the impetus for development of vaginally-administered antiretroviral microbicides to help reduce the high acquisition rates for human immunodeficiency virus (HIV) among Sub-Saharan African women. Currently, the lead candidate microbicide is a 28-day silicone elastomer vaginal ring releasing dapivirine (Ring-004), an experimental non-nucleoside reverse transcriptase inhibitor. The ring was tested in two pivotal Phase III clinical studies in 2016 and is currently undergoing review by the European Medicines Agency. Recently, we described a new type of silicone elastomer vaginal ring offering sustained release of the protein molecule 5P12-RANTES, a potent experimental chemokine analogue that potently blocks the HIV CCR5 coreceptor. Building on our previous work, here we report the preclinical development of a new combination vaginal ring that offers sustained release of both 5P12-RANTES and dapivirine, in which the 5P12-RANTES is incorporated into an exposed core within the ring body and the dapivirine in the sheath. In this way, in vitro release of dapivirine matches closely that for Ring-004. Also, we report the pharmacokinetic testing of this combination ring formulation in sheep, where vaginal concentrations of both drugs are maintained over 28 days at levels potentially useful for preventing HIV infection in women.
Collapse
Affiliation(s)
- John W McBride
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | | - Robin E Offord
- Mintaka Foundation for Medical Research, Geneva, Switzerland
| | - Oliver Hartley
- Mintaka Foundation for Medical Research, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Brid Devlin
- International Partnership for Microbicides, Silver Spring, MD 20910, USA
| | - Peter Boyd
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
14
|
McColl ER, Kojovic D, Piquette-Miller M. Battling the HIV/AIDS Epidemic: Triumphs and Barriers. Clin Pharmacol Ther 2018; 104:1042-1046. [PMID: 30412658 DOI: 10.1002/cpt.1202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Worldwide, over 77 million people have been infected by human immunodeficiency virus (HIV) but its cure remains elusive. Once considered a fatal disease, advances in antiretroviral therapy (ART) have dramatically increased the life expectancy of infected persons. Much progress has been made in the development and utilization of combination ART and preventative pre-exposure prophylaxis products, however, numerous obstacles prevent eradication. Clinical pharmacologists along with world health organizations continue to play a key role in identifying and implementing strategies to combat this disease.
Collapse
Affiliation(s)
- Eliza R McColl
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Dea Kojovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|