1
|
Barletta C, Di Natale V, Esposito M, Chisari M, Cocimano G, Di Mauro L, Salerno M, Sessa F. The Rise of Fentanyl: Molecular Aspects and Forensic Investigations. Int J Mol Sci 2025; 26:444. [PMID: 39859160 PMCID: PMC11765396 DOI: 10.3390/ijms26020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Fentanyl is a synthetic opioid widely used for its potent analgesic effects in chronic pain management and intraoperative anesthesia. However, its high potency, low cost, and accessibility have also made it a significant drug of abuse, contributing to the global opioid epidemic. This review aims to provide an in-depth analysis of fentanyl's medical applications, pharmacokinetics, metabolism, and pharmacogenetics while examining its adverse effects and forensic implications. Special attention is given to its misuse, polydrug interactions, and the challenges in determining the cause of death in fentanyl-related fatalities. Fentanyl misuse has escalated dramatically, driven by its substitution for heroin and its availability through online platforms, including the dark web. Polydrug use, where fentanyl is combined with substances like xylazine, alcohol, benzodiazepines, or cocaine, exacerbates its toxicity and increases the risk of fatal outcomes. Fentanyl undergoes rapid distribution, metabolism by CYP3A4 into inactive metabolites, and renal excretion. Genetic polymorphisms in CYP3A4, OPRM1, and ABCB1 significantly influence individual responses to fentanyl, affecting its efficacy and potential for toxicity. Fentanyl's side effects include respiratory depression, cardiac arrhythmias, gastrointestinal dysfunction, and neurocognitive impairments. Chronic misuse disrupts brain function, contributes to mental health disorders, and poses risks for younger and older populations alike. Fentanyl-related deaths require comprehensive forensic investigations, including judicial inspections, autopsies, and toxicological analyses. Additionally, the co-administration of xylazine presents distinct challenges for the scientific community. Histological and immunohistochemical studies are essential for understanding organ-specific damage, while pharmacogenetic testing can identify individual susceptibilities. The growing prevalence of fentanyl abuse highlights the need for robust forensic protocols, advanced research into its pharmacogenetic variability, and strategies to mitigate its misuse. International collaboration, public education, and harm reduction measures are critical for addressing the fentanyl crisis effectively.
Collapse
Affiliation(s)
- Cecilia Barletta
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Virginia Di Natale
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | | | - Mario Chisari
- “Rodolico-San Marco” Hospital, Santa Sofia Street, 87, 95121 Catania, Italy;
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 80121 Napoli, Italy;
| | - Lucio Di Mauro
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Monica Salerno
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Francesco Sessa
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| |
Collapse
|
2
|
Zhang Y, Wang Z, Wang Y, Jin W, Zhang Z, Jin L, Qian J, Zheng L. CYP3A4 and CYP3A5: the crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 2024; 12:e18636. [PMID: 39650550 PMCID: PMC11625447 DOI: 10.7717/peerj.18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
CYP3A, a key member of the cytochrome P450 (CYP450) superfamily, is integral to drug metabolism, processing a substantial portion of medications. Their role in drug metabolism is particularly prominent, as CYP3A4 and CYP3A5 metabolize approximately 30-50% of known drugs. The genetic polymorphism of CYP3A4/5 is significant inter-individual variability in enzymatic activity, which can result in different pharmacokinetic profiles in response to the same drug among individuals. These polymorphisms can lead to either increased drug toxicity or reduced therapeutic effects, requiring dosage adjustments based on genetic profiles. Consequently, the study of the enzymatic activity of CYP3A4/5 gene variants is of great importance for the formulation of personalized treatment regimens. This article first reviews the role of CYP3A4/5 in drug metabolism in the human body, including inhibitors and inducers of CYP3A4/5 and drug-drug interactions. In terms of genetic polymorphism, it discusses the detection methods, enzymatic kinetic characteristics, and clinical guidelines for CYP3A5. Finally, the article summarizes the importance of CYP3A4/5 in clinical applications, including personalized therapy, management of drug-drug interactions, and adjustment of drug doses. This review contributes to the understanding of the functions and genetic characteristics of CYP3A4/5, allowing for more effective clinical outcomes through optimized drug therapy.
Collapse
Affiliation(s)
- Yuqing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziying Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchao Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weikai Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheyan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lehao Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Zheng
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Shannon ML, Muhammad A, James NT, Williams ML, Breeyear J, Edwards T, Mosley JD, Choi L, Kannankeril P, Van Driest S. Variant-based heritability assessment of dexmedetomidine and fentanyl clearance in pediatric patients. Clin Transl Sci 2023; 16:1628-1638. [PMID: 37353859 PMCID: PMC10499425 DOI: 10.1111/cts.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
Despite complex pathways of drug disposition, clinical pharmacogenetic predictors currently rely on only a few high effect variants. Quantification of the polygenic contribution to variability in drug disposition is necessary to prioritize target drugs for pharmacogenomic approaches and guide analytic methods. Dexmedetomidine and fentanyl, often used in postoperative care of pediatric patients, have high rates of inter-individual variability in dosing requirements. Analyzing previously generated population pharmacokinetic parameters, we used Bayesian hierarchical mixed modeling to measure narrow-sense (additive) heritability (h SNP 2 ) of dexmedetomidine and fentanyl clearance in children and identify relative contributions of small, moderate, and large effect-size variants toh SNP 2 . We used genome-wide association studies (GWAS) to identify variants contributing to variation in dexmedetomidine and fentanyl clearance, followed by functional analyses to identify associated pathways. For dexmedetomidine, median clearance was 33.0 L/h (interquartile range [IQR] 23.8-47.9 L/h) andh SNP 2 was estimated to be 0.35 (90% credible interval 0.00-0.90), with 45% ofh SNP 2 attributed to large-, 32% to moderate-, and 23% to small-effect variants. The fentanyl cohort had median clearance of 8.2 L/h (IQR 4.7-16.7 L/h), with estimatedh SNP 2 of 0.30 (90% credible interval 0.00-0.84). Large-effect variants accounted for 30% ofh SNP 2 , whereas moderate- and small-effect variants accounted for 37% and 33%, respectively. As expected, given small sample sizes, no individual variants or pathways were significantly associated with dexmedetomidine or fentanyl clearance by GWAS. We conclude that clearance of both drugs is highly polygenic, motivating the future use of polygenic risk scores to guide appropriate dosing of dexmedetomidine and fentanyl.
Collapse
Affiliation(s)
| | - Ayesha Muhammad
- School of MedicineVanderbilt UniversityNashvilleTennesseeUSA
| | - Nathan T. James
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Present address:
Berry Consultants, LLCAustinTexasUSA
| | - Michael L. Williams
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Present address:
Department of Clinical Pharmacology and Quantitative PharmacologyAstraZenecaGothenburgSweden
| | - Joseph Breeyear
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Todd Edwards
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jonathan D. Mosley
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Leena Choi
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Prince Kannankeril
- Center for Pediatric Precision Medicine, Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sara Van Driest
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Center for Pediatric Precision Medicine, Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Present address:
All of Us Research ProgramNational Institutes of HealthWashingtonDCUSA
| |
Collapse
|
4
|
Gu QL, Xue FL, Zheng ZL, Wang HN, Guan YP, Wen YZ, Ye F, Huang M, Huang WQ, Wang ZX, Li JL. Nongenetic and genetic predictors of haemodynamic instability induced by propofol and opioids: A retrospective clinical study. Br J Clin Pharmacol 2023; 89:209-221. [PMID: 35939394 DOI: 10.1111/bcp.15480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Propofol and opioids are commonly used in anaesthesia, but are highly susceptible to haemodynamic instability, thereby threatening the patient's surgical safety and prognosis. The purpose of this study was to investigate the predictors of haemodynamic instability and establish its predictive model. METHODS A total of 150 Chinese patients undergoing thyroid or breast surgery participated in the study, with target-controlled infusion concentrations of propofol, opioids dosage, heart rate (HR), mean arterial pressure (MAP) and Narcotrend Index recorded at key points throughout the procedure. The Agena MassARRAY system was used to genotype candidate single nucleotide polymorphisms related to pharmacodynamics and pharmacokinetics of propofol and opioids. RESULTS Among nongenetic factors, baseline HR (R = -.579, P < .001) and baseline MAP (R = -.725, P < .001) had a significant effect on the haemodynamic instability. Among genetic factors, the CT/CC genotype of GABRB1 rs4694846 (95% confidence interval [CI]: -11.309 to -3.155), AA/AG of OPRM1 rs1799971 (95%CI: 0.773 to 10.290), AA of CES2 rs8192925 (95%CI: 1.842 to 9.090) were associated with higher HR instability; the AA/GG genotype of NR1I2 rs6438550 (95%CI: 0.351 to 7.761), AA of BDNF rs2049046 (95%CI: -9.039 to -0.640) and GG of GABBR2 rs1167768 (95%CI: -10.146 to -1.740) were associated with higher MAP instability. The predictive models of HR and MAP fluctuations were developed, accounting for 45.0 and 59.2% of variations, respectively. CONCLUSION We found that cardiovascular fundamentals and genetic variants of GABRB1, GABBR2, OPRM1, BDNF, CES2 and NR1I2 are associated with cardiovascular susceptibility, which can provide a reference for haemodynamic management in clinical anaesthesia.
Collapse
Affiliation(s)
- Qing-Ling Gu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fa-Ling Xue
- Department of Anaesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuo-Ling Zheng
- Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hai-Ni Wang
- Department of Pharmacy, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yan-Ping Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong-Zi Wen
- Junzhi Biomedical Research Laboratory (Foshan) Co., Ltd., Foshan, Guangdong, China
| | - Fang Ye
- Department of Anaesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Qi Huang
- Department of Anaesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong-Xing Wang
- Department of Anaesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-Li Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Parada-Márquez JF, Maldonado-Rodriguez ND, Triana-Fonseca P, Contreras-Bravo NC, Calderón-Ospina CA, Restrepo CM, Morel A, Ortega-Recalde OJ, Silgado-Guzmán DF, Angulo-Aguado M, Fonseca-Mendoza DJ. Pharmacogenomic profile of actionable molecular variants related to drugs commonly used in anesthesia: WES analysis reveals new mutations. Front Pharmacol 2023; 14:1047854. [PMID: 37021041 PMCID: PMC10069477 DOI: 10.3389/fphar.2023.1047854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Genetic interindividual variability is associated with adverse drug reactions (ADRs) and affects the response to common drugs used in anesthesia. Despite their importance, these variants remain largely underexplored in Latin-American countries. This study describes rare and common variants found in genes related to metabolism of analgesic and anaesthetic drug in the Colombian population. Methods: We conducted a study that included 625 Colombian healthy individuals. We generated a subset of 14 genes implicated in metabolic pathways of common medications used in anesthesia and assessed them by whole-exome sequencing (WES). Variants were filtered using two pipelines: A) novel or rare (minor allele frequency-MAF <1%) variants including missense, loss-of-function (LoF, e.g., frameshift, nonsense), and splice site variants with potential deleterious effect and B) clinically validated variants described in the PharmGKB (categories 1, 2 and 3) and/or ClinVar databases. For rare and novel missense variants, we applied an optimized prediction framework (OPF) to assess the functional impact of pharmacogenetic variants. Allelic, genotypic frequencies and Hardy-Weinberg equilibrium were calculated. We compare our allelic frequencies with these from populations described in the gnomAD database. Results: Our study identified 148 molecular variants potentially related to variability in the therapeutic response to 14 drugs commonly used in anesthesiology. 83.1% of them correspond to rare and novel missense variants classified as pathogenic according to the pharmacogenetic optimized prediction framework, 5.4% were loss-of-function (LoF), 2.7% led to potential splicing alterations and 8.8% were assigned as actionable or informative pharmacogenetic variants. Novel variants were confirmed by Sanger sequencing. Allelic frequency comparison showed that the Colombian population has a unique pharmacogenomic profile for anesthesia drugs with some allele frequencies different from other populations. Conclusion: Our results demonstrated high allelic heterogeneity among the analyzed sampled, enriched by rare (91.2%) variants in pharmacogenes related to common drugs used in anesthesia. The clinical implications of these results highlight the importance of implementation of next-generation sequencing data into pharmacogenomic approaches and personalized medicine.
Collapse
Affiliation(s)
| | | | - Paula Triana-Fonseca
- Department of Molecular Diagnosis, Genética Molecular de Colombia SAS, Bogotá, Colombia
| | - Nora Constanza Contreras-Bravo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Alberto Calderón-Ospina
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Carlos M. Restrepo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Adrien Morel
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Javier Ortega-Recalde
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | | | - Mariana Angulo-Aguado
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
- *Correspondence: Mariana Angulo-Aguado, ; Dora Janeth Fonseca-Mendoza,
| | - Dora Janeth Fonseca-Mendoza
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
- *Correspondence: Mariana Angulo-Aguado, ; Dora Janeth Fonseca-Mendoza,
| |
Collapse
|
6
|
Rodriguez-Antona C, Savieo JL, Lauschke VM, Sangkuhl K, Drögemöller BI, Wang D, van Schaik RHN, Gilep AA, Peter AP, Boone EC, Ramey BE, Klein TE, Whirl-Carrillo M, Pratt VM, Gaedigk A. PharmVar GeneFocus: CYP3A5. Clin Pharmacol Ther 2022; 112:1159-1171. [PMID: 35202484 PMCID: PMC9399309 DOI: 10.1002/cpt.2563] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 01/31/2023]
Abstract
The Pharmacogene Variation Consortium (PharmVar) catalogs star (*) allele nomenclature for the polymorphic human CYP3A5 gene. Genetic variation within the CYP3A5 gene locus impacts the metabolism of several clinically important drugs, including the immunosuppressants tacrolimus, sirolimus, cyclosporine, and the benzodiazepine midazolam. Variable CYP3A5 activity is of clinical importance regarding tacrolimus metabolism. This GeneFocus provides a CYP3A5 gene summary with a focus on aspects regarding standardized nomenclature. In addition, this review also summarizes recent changes and updates, including the retirement of several allelic variants and provides an overview of how PharmVar CYP3A5 star allele nomenclature is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
Collapse
Affiliation(s)
- Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrei A Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Arul P Peter
- Coriell Life Sciences, Philadelphia, Pennsylvania, USA
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | | | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | | | - Victoria M Pratt
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
7
|
Abstract
Precision medicine is a developing strategy for individualized treatment of a wide range of diseases. Congenital heart disease is the most common of all congenital defects and carries a high degree of variability in outcomes because of unidentified causes. Advances have identified individual genetic and environmental factors that have helped understand variations in morbidity and mortality in pediatric cardiology. A focus on genomics and pharmacogenetics has also been key to risk prediction and improvement in drug safety and efficacy in the pediatric population. With the rapidly evolving understanding of these individual factors, there also come challenges in implementation of personalized medicine into our health care model. This review outlines the key features of precision medicine in pediatric cardiology and highlights the clinical effects of these findings in patients with congenital heart disease. [Pediatr Ann. 2022;51(10):e390-e395.].
Collapse
|